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ABSTRACT 

Rapid energy deposition into spallation source targets 
can lead to their temperature rise at enormous rates, 
giving rise to dynamic thermoelastic stresses. 
Understanding and predicting the resulting stress waves 
are crucial for robust design and safe operation of such 
devices. To simulate the thermal shock phenomenon 
accurately, many factors should be carefully considered, 
such as geometry, surface condition, energy deposition 
profile, equation of state, possible cavitation, viscous 
damping, rate-dependent constitutive equation, element 
size, and time step. In this paper a closed form expression 
for the induced stress in slender bars with distributed 
energy deposition has been directly derived; it is then 
used to test the accuracy of computed results with FEA 
codes. It was found that significant errors can occur 
unless care is taken to restrict element size and time step 
depending on the boundary conditions, steepness of 
temperature profiles and rise rate. Criteria have been 
proposed for determining the above two parameters. 
Numerical simulation with the well-established 
ANSYS5.5 code system showed that excellent results 
could be achieved if the proposed criteria are met. 

NOMENCLATURE 
C = sonic velocity, c = 

$ 
_E , m/s; 
P 

E = Young’s modulus, Pa; 
k, = eigenvalues, k,, = ndk 
I = total length of slender bar, m; 
I, = length of heated portion of slender bar, m; 
n = integers, n = 1,2,3,. ..; 
t = time, s; 
T(x) =temperature rise with respect to reference 

temperature,“C, 
TE = total energy of the bar, Jim2 ; 

(TE),,= total energy associated with the nth mode, J Jm2 ; 
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To = temperature, “C, 
Tp = period, s; 
to = finite rise time of temperature, s; 
u&t) = displacement, m; 
x = coordinate, m; 
a = coefftcient of thermal expansion, m/m”C; 
6= half length of temperature transition, m; 
A = lame constant; 
p =lame constant; 
E(x,t)= strain; 
p = density, kg/m3; 
ofx,t)= stress, Pa; 
a’(x,t) = stress considering the effect of rise-time of 

temperature, Pa. 

INTRODUCTION 

In high energy spallation source systems a significant 
amount of energy is deposited very rapidly into the target, 
leading to a rapid temperature rise and stress waves with 
large amplitudes’-5. Understanding and predicting the 
resulting stress waves due to rapid energy deposition are 
considered crucial for robust design and safe operation of 
such devices. Recently, worldwide effort’J has gone into 
simulating such thermal shock with various FEA codes, 
such as CTH, ABAQUS, and ANSYS etc. 6-8 To simulate 
such stress waves accurately, many factors should be 
carefully considered, such as geometry, surface condition, 
energy deposition profile, equation of state, possible 
cavitation, viscous damping, rate-dependent constitutive 
equation, element size (Es), and time step (Ts). It is very 
difficult and impractical to develop experimental data to 
investigate the effects of these factors on accuracy of 
simulation with FEA codes. To determine robust criteria 
for appropriate ES and TS, a simpler method is to use a 
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theoretical solution to a relative simple problem and 
cross-check numerical results. 

For reference, in 1974 Sievers’ used a step function 
to simulate the temperature distribution in a cylinder and 
strived to obtain an analytic solution to the wave equation 
describing stress wave dynamics in an axially-symmetric 
cylindrical geometry. In this case, a discontinuity exists at 
the radial interface region where temperature is rapidly 
raised and region where temperature remains unchanged. 
The resulting stress becomes a discontinuous function of 
time at various times corresponding to the arrival of the 
infinitely steep-edged wave fronts or their reflections. 
Thus, the continuous wave equation format cannot apply. 
Results such as those in Ref.6 are only solutions to a 
mathematical problem, but the mathematical problem 
itself ceases to be a correct statement of physical reality. 
We have determined that a closed-form analytic 
expression for comparing against FEA codes can be 
determined in a one-dimensional framework. In this case, 
derivation of expressions for stress waves in slender bars 
was found to be most suitable for such a study. However, 
this is only possible in the absence of step discontinuities. 
By employing a sinusoidal curve to smooth off the edge 
of the step temperature distribution function, the authors 
derived a closed form expression for thermoelastic stress 
propagation in slender bars; this is then used to judge the 
accuracy of computed results with FEA codes. The 
problem geometry is depicted graphically in Figure 1. In 
subsequent sections we present the derivation of analytic 
expressions and comparisons against results from a FEA 
code. 

STRESS WAVES IN A SLENDER BAR-PROBLEM 
FORMULATION 

Energy deposition simulating the stage when high- 
energy nuclear particles bombard the target was assumed 
to be spatially distributed as shown in Figure 1. The 
duration of the particle bursts is of the order of 
microseconds of even’ shorter; heat transport is negligible 
during such short time duration and can be safely 
neglected in the analytical mode for determining stress 
waves in the several tens of microseconds time frame. 

In the following analysis, a slender bar (a bar being 
defined as a long rod of circular cross section whose 
length is at lest 10 times greater than its diameter) of 
elastic material with no damping, free boundaries, and 
unchanged material constants is assumed. If, however, the 
temperature rise is’ sufficiently high which may cause 
plastic deformation, more sophisticated methods 
considering dispersive effects must be adopted”. For the 
present purpose of determining a well-characterized 
closed-form analytic solution for developing space and 
time step criteria, neglecting plastic deformation effects is 

acceptable. We fast derive an expression for stress wave 
propagation for instantaneous temperature rise, and then 
derive an expression that corresponds to that of the time 
duration of the nuclear particle pulse (which deposits 
energy in the target material). 

Stress Waves Due to Instantaneous Temperature Rise 

Consider a slender bar of length 1, whose temperature 
is instantaneously increased according to the distribution 
given by Eq.( 1) and which remains unchanged, thereafter. 

_ 

‘Tr T(x)= {&~l -sin$(x -I,)] 
(1) 

12 
ifI,-65x11,+6 

lo ifl,+Slxll 

Figure 1 shows the temperature distribution along the bar. 
Unlike the case of Ref.6 where the temperature gradient is 
infinite at the heated-unheated interface, in our 
formulation of Eq.( 1) the temperature is differentiable and 
the half length S of the transition interval can become as 
small as we want to make it. Spatial change in 
temperature gradient increases as Gdecreases. 

The equilibrium equation is now given by 

(2) 

The thermoelastic strain consists of two parts: one 
component related to stress by Hooke’s law and another 
due to free thermal expansion. The relations is expressed 
as 

(3) 

Substituting for displacement using Eq.(3) and 
considering the assumption that the temperature field is 
independent of time, we can rewrite Eq.(2) as 

Assuming unconstrained boundaries, we obtain 

o(OJ) = a(Z,t) = 0 (5) 

For evaluation of the initial stress and its velocity we 
ass.ume its initial displacement and velocity are zero. The 
initial conditions have the form 

0(x,0) = -Ed”(x) (6) 
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The solution to Eq.(4), which meets both Eq.(5) and 
Eq.(7), is well-known I’. 

a(x,t) = $CH sink, cosk,,ct 
“=I 

(8) 

From Eq.(8),we get 

0(x,0) = gCn sink,x 
“=I 

Selecting an arbitrary integer m, multiplying both sides of 
the above equation by sin(k,,&, and integrating from x=0 
to 1, and considering the orthogonality of trigonometric 
series, we obtain, 

C,~~sin2k,,xdr = ra(x, 0)sink”xd.x 

Remembering that dx,O) is given by Eq.(6), we have 

C, = AB, (9) 

0, = cos(k,,l,J cos( k,S) . 

Substituting Eq.(9) into Eq.(8) gives 

u(x,t) = ATB”sink,xcosk,ct 
“31 

Displacement is given 

cosks(1 - cosk,ct) 

(10) 

(11) 

Stress Waves Due to Finite Temuerature Rise-time 

As a. matter of fact, an instantaneous rise in 
temperature cannot occur. For short nuclear particle pulse 
durations lasting in the nano-to-micro seconds, adiabatic 
temperature rise occurs, and the rise-time of temperature 
can safely be assumed equal to the time duration of the 
pulse itself. Therefore, stress in the bar is given by 

We assume temperature of the bar is linearly raised, i.e., 

mx, r) P 
-= to 

ifOIt<t, 

Tw+ 1 
I ift > t, 

Substituting the above equation, and Eq.(lO) into Eq.(12) 
gives 

[*gB&(t)sink,x if0 <tit, (13) 
o’(x,t) = { “1’ 

I= 
A B,F,(t)sink,x ift > t, 

“4 

where sink,ct; 
4(0= kct 

Em = 
iiRk,+ - sink&t - tJ. 

kcto 
It can be easily shown that limit of E,(t), F,,(t) is cos(k,ct) 
when to + 0. This implies that Eqs.( 13) reduce to Eq.( 10) 
as time-rise of temperature approaches zero. 

SIMULATION WITH FEA CODES 

As is obvious, it is impossible to determine exact 
solutions to most thermal shock problems. This is due to 
complex geometrical. and multi-material structural 
considerations. One practical method is to use FEA codes. 
However, as we point out in this paper, even with stable, 
convergent solution schemes the accuracy of predictions 
from FEA codes can be strongly dependent on load step, 
ES and TS. We consider aspects dealing with each of 
these key parameters as follows. 

Load Steu Determination 

General wave equation for isotropic linear elastic 
media is given by Eq.(14) when the body forces except 
temperature load are neglected**. 

(/Z+#VV!u+,&u-a(3R+2&VT=& (14) 

Equation (14) indicates that a thermally induced stress 
waves are produced by rapid spatial change in 
temperature. When the wave impinges on a boundary, 
part of its energy travels forwards while part is reflected 
back, usually with a phase change. Thereafter the shape of 
stress at all times is obtained by overlapping of 
compression and rarefaction component waves. 

For the case of continuous spatial change in 
temperature, the initial stress wavefronts are continuous, 
whose spatial intervals equal the length of the 
corresponding temperature transition zone. Both stepped 
and ramped thermal loads can be appropriately simulated 
if a small enough TS and fine enough ES are employed. 
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However, if spatial temperature jump exists at a boundary 
or within a restricted domain of the interior, the spatial 
interval of the initial stress wave front equals tOc. where to 
is the temperature rise time. When temperature rise time to 
is zero, i.e., stepped load, the initial stress is discontinuous 
at the wave front. Since FEA codes are unable to resolve 
propagating discontinuities, stepped (i.e., instantaneous) 

\ loads cannot be properly simulated. 

In an accelerator facility target, energy is rapidly 
deposited by proton beam through a so-called window 
region. The situation is similar to that shown in figure 1 
for a slender bar if we imagine that a proton beam enters 
the bar from the left and deposits its energy to provide a 
temperature rise distribution as shown therein. In this case, 
at the left-most boundary region to the right of the 
boundary (i.e., in the 0+ direction of the x-axis) the 
temperature distribution is continuous and differentiable. 
However, since the left boundary is free to move, the 
temperature distribution left of the origin (in the O- 
direction of the x-axis) is discontinuous and non- 
differentiable. Therefore, for FEA simulation purposes if 
a stepped load is applied as a convenience feature as in 
Ref.1 or 3, a spatial temperature jump will exist at its 
front (left boundary) face. This discontinuity cannot be 
appropriately simulated since the time-and-spatial step 
requirements become identically equal to zero. 

Element Size Determination 

As mentioned above, properly resolving spatial 
temperature differentials in the region where large 
temperature gradients exist plays an important role. As 
may be obvious, when spatial temperature changes 
become increasingly rapid, accurate numerical 
representation requires increasingly finer meshing. We 
shall take the temperature described by Eq.(l) as an 
example to study how small the mesh should be for 
accurate simulation. 

Let A stand for ES in the vicinity of rapid temperature 
transition and S/d=N. The temperature gradient is 
calculated in FEA codes in accordance with the following 
equation. 

The limit of - when N approaches infinite can be 
Dx 

obtained by applying L’Hopital’s rule, 

where dT(x)/dr is the exact temperature gradient. The 
above equation means that the accuracy of simulation 
depends strongly on N, i.e., the larger the N, the better the 
prediction. But, an N that is too large may improve 
accuracy only slightly and results in a calculation that is 
prohibitively expensive. A tradeoff will obviously need 
to be made by the numerical experimentalist. For example, 
when N equals 8 or 80, sin(lJ4N) / (n/4N) is 0.998 and 
0.9998, respectively. Numeric calculations and 
comparisons we have made show that temperature 
gradient can be appropriately estimated by Eq.( 15) when 
N is not less than 8. To adequately resolve the spatial 
distribution of temperature, the following criterion is 
recommended to determine ES. 

For a multi-dimensional simulation, If the 
temperature varies gradually similar to the sinusoidal 
function assumed herein for the case of a single 
coordinate system, the value for ES given by Eq.(16) 
should be able to resolve steep temperature gradients all 
around. Therefore, Eq.( 16) is expected to be applicable to 
higher- dimension situations also. 

Time SteD Determination 

Equation (11) reveals that the displacement function 
consists of various modes. We derived the condition for 
time step determination via consideration of the most 
dominant frequency impacting the energy of the system. 
We first started by obtaining the sum (TE) of the 
instantaneous kinetic- and potential-energy of the slender 
bar by applying Eq.( 10) and (11) as 

DlTx) _ T(x+W)-T(u) 
Dx A 

Inserting temperature at the transition region given by 
Eq.( 1) into the above equation, we get 

TE = Ealz’ $ 

The total energy associated with the nth mode is given by 

U-E),= 
(15) 
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Inspection of this result reveals that the most important 
modes are those which minimize the denominator (s/28- 
k,,), i.e., those for which k, - N’2S. When k,, approaches 
IJ26, to simplify the analysis we can neglect the first two 
terms in the parenthesis and write 

(TE), = ET co8 k,E, 
( 
;” k,s 
5-k,,‘2 

Let A R h-~ Therefore, the above equation 26=c,&$=-. 
C 

can be written as 

Since circular frequencies are discrete, the (TQ,, vs.q 
described by the above equation can be obtained by 
equally dividing the abscissa under the envelope curve to 
obtain. 

The above equation shows that the circular frequencies 
that have the most important energy contribution are those 
for which & 

I “I 
5~. Hence the maximum important 

C 

circular frequency is 37~926. To resolve this frequency, 
time step should be determined by 

(17) 

In the case of finite rise-time of temperature, the 
corresponding length of temperature transition zone is tOc. 
To resolve this, the smaller one of Gand t&2 should be 
used when determining ES and TS. 

In the case of finite rise-time of temperature, the 
corresponding length of temperature transition zone is tOc. 
To resolve this, the smaller one of Sand tOc/2 should be 
used when determining ES and TS. 

Integration methods used in FEA codes fall into two 
categories: explicit and implicit. It has been found that13, 
for wave-propagation problems, the time step for implicit 
methods must be about the same as that for explicit 
methods to satisfy accuracy requirement. 

So far we found from the open literature that no 
rigorous stability criterion for determining proper time 

step has been developed, but it is customary to determine 
the TS from” as 

TS=(O6-0.9)$ 

The time step size predicted by Eq.( 17) which is based on 
theoretical analysis clearly meets and is more limiting 
than the above (sound-speed limiting) and experience 
based requirement. Therefore, Eq.( 17) may be used to 
determine TS for stable computation of thermal shock 
conditions. 

COMPARISONS OF ANALYTIC SOLUTIONS AND 
FEA PREDICTIONS 

The well-established ANSYS5.5 code was employed 
for comparison of FEA predictions against exact analytic 
solutions presented in this paper. This was done to 
calculate the thermally-induced stresses in a slender bar 
(one dimensional case shown in Figure I), and for a 
cylindrical bar (two dimensional case where temperature 
jump conditions are absent at boundaries) subjected to 
rapid energy deposition. 

One Dimension Problem 

Stresses in a tungsten slender bar subjected to the 
temperature distribution described by Eq.(l) and shown 
graphically in Figure 1, were simulated using ANSYS5.5 
for comparison against analytic results. Clearly, there is 
one temperature jump at the left boundary of the bar, and 
a temperature transition zone at the heated and unheated 
interface. Due to this configuration, two stress waves, a 
and b, propagating in opposite direction are produced at 
the temperature transition zone. At the left end a stress 
wave c is generated. When these stress waves reach one 
of the ends of the bar, they will be reflected with a change 
in phase. The motion dynamics of wave transport is 
depicted in Figure 2 that represents the wave 
characteristics for the slender bar case. With such a 
depiction, the stress at any point can be determined by 
superposition of the three fundamental stress waves. 

As mentioned previously, a temperature jump 
(discontinuity) condition exists at the left end of the bar 
and as such, cannot be simulated with the ANSYS 5.5 
FEA code. Only a ramped (temperature) load can be 
simulated since ANSYS 5.5 (like other FEA code) does 
not incorporate propagation of discontinuous wave front. 
Three cases with different temperature rise time were 
calculated. In order to check the consequences of forcing 
ANSYS 5.5 to simulate a stepped temperature load in 
time (i.e., simulation of results with zero temperature rise 
time). A stepped load was applied in case 4. Pertinent 
parameters used in the calculations are as follows: 
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1 = 6mm, 1, = 2.5mm, E = 4.43xlO”Pa, a = 7.936x10d 
ndm”C, c = 4791mls, p = 19300kg/m3, 6 = 0.8mm, ES = 
1 O,wn, TS = 2n.r. ES and TS required by criteria Eq.( 16) 
and (17) were given in table 1. It can be seen that the 
criteria are met in case 1, but are not obeyed in other three 
cases. Calculated stress and the exact result given by 
Eq.( 13) at the point x=4mm are summarized in Table 2. 

As is clear from table 2, the stress magnitude, 
frequency, and shape are in excellent agreement when the 
proposed criteria are met. In case 1 the relative error 
between prediction and exact result is about 8%, which is 
usually acceptable in engineering calculation. For 
improved accuracy the criteria of Eq.( 16) and ( 17) need to 
be made stricter. In the other three cases, ES and TS 
required at the left end are not met, i.e., the wave front of 
the initial stress wave c is not properly simulated. Rapid 
stress oscillations occur at the corresponding time when 
stress wave c arrives at that point. This gives rise to very 
significant discrepancies and clearly indicates the 
importance of restricting element size and time step. 

Two Dimensional Problem ’ 

To enable determination of appropriateness of use of 
the criteria suggested by Eqs.( 16) and (17) for 
multidimensional geometries, a two dimensional case was 
considered (even though we do not have an exact solution 
to compare against now). Numerical simulations were 
made to predict stress waves in a long cylinder heated 
rapidly along its axis with constant temperature in the 
axial direction and radial-varying spatial temperature 
distribution. Radial temperature distribution was kept 
similar to that described by Eq.(l) with r and r, taking 
the place of x and Z,, .Fixed outer boundaries and zero 
axial displacement were assumed. There is only one 
temperature transition zone at the heated-unheated 
interface. It is to be noted that, no jump exists in the 
spatial temperature distribution, even at the outer 
boundary since it is fixed. As a consequence, a stepped 
load in time may be applied. The cylinder radius R ‘is 
5mm; radius of heated region r, =2.5mm; half length of 
temperature transition 6=lmm; temperature To =890 “C.; 
temperature rise time to=O. 

ES and TS in accordance with Eq.( 16) and (17) 
criteria are 0.125mm and 12.5ns respectively. Four cases 
were calculated: case 1, ES=O.Olmm, TS=12.5ns; case 2, 
ES=O.lmm, Ts12.5ns; case 3, ES= lmm, TS=4Ons; and 
case 4, ES=lmm, TSrlns. Obviously, case 1 and case 2 
meet the proposed criteria, while case 3 and 4 do not 
comply with the proposed criteria. 

As expected, no stress attenuation was noted for case 
1. Since ES in case 2 is larger than that .in case 1, slight 

stress attenuation occurs. However, the difference in the 
stress amplitudes is small. In case 3 and 4, not only 
significant stress reduction are predicted, but also the 
amplitudes of stresses were noted to be much smaller than 
that in case 1. This further goes to indicate the importance 
of paying attention to the importance of adequately 
choosing ES and TS for thermal shock simulation, as 
otherwise, totally misleading and physically unrealistic 
results can be predicted with FEA codes. 

CONCLUSIONS/SUMMARY STATEMENTS 

1. Exact thermoelastic stress solutions for a one- 
dimensional geometry slender bar with spatially- 
varying, time dependent energy deposition have been 
directly derived and used to test the accuracy of FEA 
code predictions. 

2. Significant discrepancies can occur unless care is 
taken to restrict both the ES and TS. The stress 
magnitude, frequency, and shape can be reasonably- 
well (within 10%) predicted when the proposed 
criteria of Eq.( 16) and (17) are met in the simulation 
model with FEA. 

3. Stepped thermal load should not be applied in FEA 
simulations for thermal shock of SNS-type target if 
FEA codes are not designed to resolve propagation of 
discontinuous wave fronts. 

4. Although we present comparisons for only the cases 
of one-dimensional and two dimensional waves, the 
criteria developed are quite general and may be used 
for generalized multidimensional thermal shock 
simulation of SNS target systems. 
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Table 1. ES and TS Required By Eq.(16) and (17) 

Whether ES and 

Table 2. Comparison Between Calculated Stress and Exact Result 

Case No. 

1 
2 
3 
4 

Maximum Compression Stress Maximum Tensile Stress 
Calculated Exact Relative Calculated Exact Relative 

(GPa) (GPa) Error(%) (GPa) (GPa) Error(%) 
-1.69 -1.57 -7.64 2.84 2.84 0 
-1.81 -1.57 -15.2 2.86 2.84 0.7 
-2.11 -1.57 -34.4 2.86 2.84 0.7 

,, -2.15 NA 2.86 NA .< ., ? 
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