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Develop for neural nets

Develop methodology to
predicted by neural network models

Obtain best estimates for network model parameters

¢ consistently combine experimental data (sensor measurements)
with model output

Significantly reduce the uncertainties underlying decision
processes based on learning

Apply new methodology to characterization of oil fields



Artifictal Neuromorphic Systems

Large scale nonlinear dynamical systems composed of smple
Interacting units

Can carry out useful information processing by means of their
collective [emergent] computational properties

Biological neural networks provide “proof-of-concept” guidelines

Neural Network .
Processing Element
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Artificial Neuromorphic Systems

L earning

Neural nets provide efficient
solutions to challenging problems
In pattern recognition, signal
analysis, and real-time control of
complex systems.

At the heart of such advances lies
the development of very efficient
methodologiesfor learning

Challenges Oil Field Characterization

¢ Systematic treatment of uncertainty 0 given detailed log data from L,
and L, and seismic survey data between

¢ very siow learning for systems of wells, estimate subsurface properties at x

realistic size

o convergenceto of @ But, how much confidence can one place

error function in such network predictions obtained from
sensor data corrupted by uncertainty ?



L earning

Development of neural learning algorithms is generally
based upon the minimization of an energy-like neuromor-
phic error function
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pioneering contributions of Grossberg, Werbos, Hopfield

gradient-based techniques have provided the main computational mechanism
for the optimization process

+ excessivetraining timesfor large networks

considerable efforts have been devoted by many groups to

speed up rate of convergence
e.g., Barhen & Zak, IEEE Computer, 22, 67-76 (1989)

compute more efficiently gradients
eg., Barhen & Toomarian, Appl. Math. Lett., 3, 13-18 (1990)
eg., Toomarian & Barhen, U.S Patent No. 5,930,781 (July 1999)

novel approaches based on linear algebraic methods pioneered by Biegler-
Kdnig and Barman
eg., Barhen & Protopopescu, Neural Process. Lett., 11, 113-129 (2000)
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Feedforward flow

| nodesinput layer
V' nodesvirtual layer
O nodes output layer

K cluster patterns
Inputs:  Qy
Outputs: Rkq

Synaptic interconnections
W, linear
y nonlinear

DeepNet

Approach

Training Data
¢ givenL training patterns{ €2, , R -}
define K clusters: | ~ K~ L: {2 , Rk}
+ compute nominal uncertainties for each cluster

Computational M odéel
R o = M (L ’Wvo)]

Uniquefeature

+ virtual layer connected to input layer via non-
linear y transform ( )

¢ vy maps(l,, into nonsingular matrix =,

Exk =V ( Q)
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Pvo= —kn Who

the learning algorithm minimizes
thenorm yT,., P,y

since , ONe sweeps
backwards, using initial W,

—kt Who™ Tko = ~kn R R Who
renormalization matrix =, introduced
to satisfy sigmoid constraints at HL
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Pro=Exk Wko

the learning agorithm minimizes
thenorm yT,, P,y

solvesthe system

—

TKO = =KK WKO

since T,,and =, are known, we
can compute W, by SVD of =,



DeepNet
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BKB Network DeepNet
+ solvefor W, thesystem ¢ invirtual layer architecture the matrix
-~ — = Isnonsingular
W Wy, =] (G Rin) ‘ (i) _ I)‘

Xk ) =1 ——5

¢ inversion of €2, introduces an

unavoidable loss of accuracy, L ad = 2u® (k) 6
since K p | det( Xy ) = Q 329 50 =9
¢ forward sweepyields P, » new DeepNet methodology will enable

Po =1 (W Wm )RAEWHO accurate (singleiteration)



L earning under Uncertainty

Recognized need for tools that explicitly account for
data and model uncertainties. The design of complex multisensor-based
target—detection / tracking architectures illustrates typical application.

* inputs
e parameters

* System responses y
I.e., outputs

The methodology we are developing has tree primary goals:
¢ determine confidence limitsof neural net — predicted results
¢ consistently combine sensor measurements with computational results

v obtain best estimates of model parameters
v reduce uncertaintiesin estimates

¢ apply to CESAR tasks: : :



Critical Reguirements
for Learning under Uncertainty

Techniques based upon model sensitivities enable
vianew information fusion

Such methods should incorporate five key capabilities

¢ Quarantee that no important effects are overlooked
® full set of sensitivities

. J. Barhen and V. Protopopescu, in
o fast processing of large data sets DARS, 4, 403-413, Springer (2000)
® fficient computation of sensitivities F. Aminzadeh and J. Barhen, Petrol.
Sci. & Eng., 24, 49-56 (2000)
¢ systematic treatment of nonlinearities F. Aminzadeh and J. Barhen, Comp.
& Geosci., 26, 869-875 (2000)

o inclusion, whererelevant, of time dependence
inputs, model parameters, responses

+ comprehensive method for combining experimental (i.e., sensor) data
and model results; goal isto reduce the uncertainties



NOGA

Sensgitivities

0

provide a systematic way to propagate
uncertainties in complex, non stationary,
nonlinear models

S| =9dq /0a,
system parameters: a={W, }

network computed responses: g = r (p)
experimental response: r

determine and rank the importance of
parameters and input data to computed
guantities of interest (system responses)

computed using adjoint operator methods
or automatic differentiation codes for
recurrent nets

nominal uncertainties quantified in terms
of C.. =(AaAa')

Bayesian | nference

Information fusion goal is to combine
consistently computational results and
measurements

minimize a generalized Bayesian loss
function with constraints

6, G, A6
L=@Gr|a-a] %)C, C, V. %-a;

A v 5.7
+1 'c[a,a,4,q,T,...,S,...]

optimization uses the inverse of the total
covariance matrix asthe natural metric of
the calculational manifold

solution of optimality equations yields best
estimates for parameters and reduced
uncertainties



Oil Field Characterization

h Pompano Field

Fr amewor k % Miliucene Met Pay - All Sénﬂs
¢ Ability to predict location of \K" \H\“f} \\
remaining oil in neighborhood of R - \\ | T
existing production wells is of vita AN R
economic importance to petroleum \ \h as
industry e e SN
Sl S
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relationship between seismic survey et Pay ;
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DeepNet Results

T Pompano Acoustic Impedance
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DeepNet (BKB) prediction of best-estimates
porosity log. Data: B10 5S (well B10)

Prediction of best-estimates:  gamma ray log.
Current state-of-art method (Nadaraya-Watson by
Rao) Data: B10_5S (well B10)
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Summary

We have developed new methods for neural net learning under
uncertainty

= ultrafast (single iteration) DeepNet neural net learning code provides the
computational framework for modeling

» information fusion module NOGA uses =1 _ In conjunction
with minimization of a constrained generalized Bayesian loss function to
combine model prediction and experimental results

» best-estimates for model parameters and reduced uncertainties

DeepNet / NOGA expected to provide for severd
CESAR basic research activities
& pseudo-logs prediction in the neighborhood of petroleum reservoir wells
tracking in cooperating robots
pattern classification using quantum dot arrays
synchronization of arrays of lasers



