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Outline

p Develop faster learning algorithms for neural nets

p Develop methodology to determine the confidence limits 
of results predicted by neural network models

p Obtain best estimates for network model parameters
u consistently combine experimental data (sensor measurements) 

with model output

p Significantly reduce the uncertainties underlying decision 
processes based on learning

p Apply new methodology to characterization of oil fields 



Artificial  Neuromorphic  Systems

u Large scale nonlinear dynamical systems composed of simple 
interacting units

u Can carry out useful information processing by means of their 
collective [emergent] computational properties

u Biological neural networks provide “proof-of-concept” guidelines
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Artificial Neuromorphic Systems

Learning
Neural nets provide efficient 
solutions to challenging problems 
in pattern recognition, signal 
analysis, and real-time control of 
complex systems.
At the heart of such advances lies 
the development of very efficient 
methodologies for learning

Challenges 
u systematic treatment of uncertainty

u very slow learning for systems of 
realistic size

u convergence to local minima of 
error function

Oil Field Characterization
r Goal: given detailed  log data from  L1

and L2  and seismic survey data between 
wells,  estimate subsurface properties at x

r But, how  much  confidence  can one place 
in such network predictions obtained from 
sensor data corrupted by uncertainty ?

L2L1 x



Learning

p pioneering contributions of Grossberg, Werbos, Hopfield

p gradient-based techniques have provided the main computational mechanism 
for the optimization process

u excessive training times for large networks

p considerable efforts have been devoted by many groups to
s speed up rate of convergence

e.g., Barhen & Zak, IEEE Computer, 22, 67-76 (1989)
s compute more efficiently gradients

e.g., Barhen & Toomarian, Appl. Math. Lett., 33 , 13-18  (1990)
e.g., Toomarian & Barhen, U.S Patent No.  5,930,781  (July 1999)

p novel approaches based on  linear algebraic methods pioneered by Biegler-
König and Bärman 

e.g., Barhen & Protopopescu, Neural Process. Lett., 1111 , 113-129  (2000)

Development of  neural  learning  algorithms is generally 
based upon the minimization of an energy–like neuromor-
phic error function



DeepNet  

ApproachApproach

Training Data
u given L training patterns {ΩLI , RLO}

s define K clusters: I ⊥ K ⊥ L : {ΩKI , RKO}

u compute nominal uncertainties for each cluster

Computational Model

I         V         O

ARCHITECTUREARCHITECTURE

( , )K O K I VO= WR WM

Wψ

Feedforward flow
I nodes input layer
V nodes virtual layer
O nodes output layer

K cluster patterns
Inputs:    ΩKI

Outputs: RKO 

Synaptic interconnections

WVO linear

ψ nonlinear 

Unique feature

u virtual layer connected to input layer via non-
linear ψ transform (nonlinear weights)

u ψ maps ΩΚΙ into nonsingular matrix ΞKK

ΞKK = y ( ΩΚΙ )



DeepNet

BKB Network
u PKO = GKH WHO

u the learning algorithm minimizes 
the norm  ψTKO –PKO ψ

u since GKH not known, one sweeps 
backwards, using initial WHO guess
G KH WHO= TKO = GKH RHH R-1

HH WHO

u renormalization matrix RHH introduced 
to satisfy sigmoid constraints at HL

DeepNet 
u PKO = ΞKK WKO

u the learning algorithm minimizes 
the norm  ψTKO –PKO ψ

u solves the system  
TKO =  ΞKK WKO

u since  TKO and ΞKK are known, we 
can compute WKO by SVD of  ΞKK

TKO = ρ -1(RKO )



DeepNet

u solve for          the system

u inversion of ΩKI introduces an
unavoidable loss of accuracy,  
since K π I

u forward sweep yields  PKO

u in virtual layer architecture the matrix 
Ξ is nonsingular

è new DeepNet methodology will enable 
accurate ultrafast (single iteration) 
learning
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Learning under Uncertainty

The methodology we are developing has tree primary goals:
u determine confidence limits of neural net – predicted results

u consistently combine sensor measurements with computational results 

t obtain best estimates of model parameters

t reduce uncertainties in estimates

u apply to CESAR tasks: robotics, seismic analysis, quantum dots

Recognized need for information fusion tools that explicitly account for 
data and model uncertainties. The design of complex multisensor-based 
target–detection / tracking architectures illustrates typical application.

For each model

• inputs
• parameters

• system responses 
i.e., outputs



Critical Requirements
for Learning under Uncertainty

Techniques based upon model sensitivities enable robust learning and 
generalization by a neural network via new information fusion

Such methods should incorporate five key capabilities
u guarantee that no  important effects are overlooked

è full set of sensitivities

u fast processing of large data sets
è efficient computation of sensitivities

u systematic treatment of nonlinearities

u inclusion, where relevant, of  time dependence
inputs, model parameters, responses

u comprehensive method for combining experimental (i.e., sensor) data
and model results; goal is to reduce the uncertainties

J. Barhen and V. Protopopescu, in 
DARS, 44 , 403-413, Springer (2000)

F. Aminzadeh and J. Barhen, Petrol. 
Sci. & Eng., 2424 , 49-56 (2000)

F. Aminzadeh and J. Barhen, Comp. 
& Geosci., 2626 , 869-875 (2000)



NOGA

Sensitivities
p provide a systematic way to propagate 

uncertainties in complex, non stationary, 
nonlinear models

system parameters:                 a = {W, z }

network computed responses: q = ρ(p)
experimental response:           r

p determine and rank the importance of  
parameters and input data to computed 
quantities of interest (system responses)

p computed using adjoint operator methods 
or automatic differentiation codes for 
recurrent nets

p nominal uncertainties quantified in terms 
of  covariance matrices

Bayesian Inference
p information fusion goal is to combine 

consistently computational results and 
measurements

p minimize a generalized Bayesian loss 
function with constraints

p optimization uses the inverse of the total 
covariance matrix as the natural metric of 
the calculational manifold

p solution of optimality equations yields best 
estimates for parameters and reduced
uncertainties

S q /í ì í ì
ni n i= ∂ ∂a

1

ˆ ˆ)

ˆ

ˆ(

C C

C C

− −   
   = − | − | −   
   •   

rr r

r

q r

q r
a

a aaa a a aL Y t

t

s

s u
ˆ[ ]ˆ , , ,..., ,...T q q r Sc a,a,λλ++

tC = D Daa a a



Framework 

u Ability to predict location of 
remaining oil in neighborhood of 
existing production wells is of vital 
economic importance to petroleum 
industry

u Neural nets are used to capture the 
relationship between  seismic survey  
data and well logs

u Avoid costly drilling of new wells

u Demonstrate capability of DeepNet 
to capture this extremely complex 
nonlinear relationship  

Oil Field Characterization



DeepNet Results
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DeepNet (BKB) prediction of best-estimates
porosity log.          Data: B10_5S (well B10)
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DeepNet (BKB)   prediction of   best-estimates
gamma ray log.         Data: B10_5S (well B10)
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Prediction of   best-estimates: gamma ray log.
Current state-of-art method (Nadaraya-Watson by 
Rao) Data: B10_5S (well B10)



Summary

We have developed new methods for neural net learning under 
uncertainty

è ultrafast (single iteration) DeepNet neural net learning code provides the 
computational framework for modeling

è information fusion module NOGA uses sensitivity matrices in conjunction 
with minimization of a constrained generalized Bayesian loss function to 
combine model prediction and experimental results

è best-estimates for model parameters and reduced uncertainties

DeepNet / NOGA expected to provide enabling capabilities for several 
CESAR basic research activities

u pseudo-logs prediction in the neighborhood of petroleum reservoir wells

t tracking in cooperating robots
t pattern classification using quantum dot arrays
t synchronization of arrays of lasers


