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ABSTRACT

The Reich-Moore formulation is used extensively in many isotope/nuclide evaluations to
represent neutron cross section data for the resolved-resonance region.  The Reich-Moore
equations require the evaluation of complex matrices (i.e., matrices with complex quantities) that
are a function of the resonance energy and corresponding resonance parameters.  Although the
Reich-Moore equations are documented in the open literature, computational pitfalls may be
encountered with the implementation of the Reich-Moore equations in a cross-section processing
code.  Based on experience, numerical instabilities in the form of nonphysical oscillations can
occur in the calculated absorption, capture or elastic scattering cross sections.  To illustrate
possible numerical instabilities, the conventional Reich-Moore equations are presented, and the
conditions that lead to numerical problems in the cross-section calculations are identified and
demonstrated for 28Si and 60Ni.  In an effort to circumvent the computational problems, detailed
or revised Reich-Moore expressions have been developed to efficiently and accurately calculate
cross sections for neutron-induced reactions in the resolved-resonance region.  The revised
equations can be used to avoid numerical problems associated with the implementation of the
Reich-Moore formulation in a cross-section processing code. The revised Reich-Moore equations
are also used to demonstrate the improved cross-section results (i.e., without numerical
instabilities) for 28Si and 60Ni.

1.  INTRODUCTION

Radiation-transport calculations require the use of energy-dependent cross-section data
to solve the Boltzmann transport equation for fissile systems.  For neutron-induced reactions, the
Evaluated Nuclear Data File (ENDF) system has procedures and formats that are used to describe
the complex structure of cross-section data for specific isotopes/nuclides of interest (ENDF/102,
1991).   In a cross-section evaluation for a particular material that is characterized by neutron
resonances, a resonance formalism (e.g., Reich-Moore, single-level Breit Wigner, etc.) is specified
to reconstruct the energy-dependent cross-section function in the resonance region.  For the
specified resonance formalism, experimentally determined resonance parameters (e.g., resonance
energy, partial widths, etc.) are also provided in the cross-section evaluation.  Since radiation
transport codes do not directly access the data in a cross-section evaluation, a processing code
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must be used to read the parameters and reconstruct the energy-dependent cross-section function
that is to be used in a transport calculation.  One of the most widely used resonance
representations in ENDF/B-6 is the Reich-Moore (RM) formalism.  Although the RM equations
are well documented in the open literature, the implementation of the RM equations can lead to
numerical instabilities in the calculation of absorption, capture and elastic scattering cross sections
under certain conditions.  The objective of this paper is to present the RM formulae and identify
the conditions that lead to numerical instabilities in the cross-section calculations.  Moreover, the
paper provides detailed expressions that can be used to avoid numerical problems in calculating
cross sections in the resolved-resonance region using the RM representation.

2.  REICH-MOORE RESONANCE EQUATIONS

Resonance representations are essentially interaction models that describe the interaction
between a neutron and target nucleus.  Because of the complexity of the internal structure of a
nucleus, the resonance representations do not model the nuclear effects within the nucleus.
However, the resonance parameters that are provided in a cross-section evaluation are strongly
correlated to the internal properties of a nucleus and are obtained by the evaluation of measured
cross-section data.  With regard to the RM representation, the RM formalism is an approximation
to the general R-matrix theory for describing neutron-nucleus interactions.  Since the RM
formulae are documented in the open literature, a derviation of the RM formulae is not provided
in the subsequent discussion; rather, the defining equations of the approximation are presented.
In the RM approximation, the off-diagonal contribution to the R-matrix from the photon channels
is neglected.  The resulting formalism is especially suited for representing isotopes that are
characterized with many resonances.  Although the ENDF formulation of the RM formulae
restricts the number of fission channels to two, the ENDF formulation is well suited for fissile
isotopes because the fission process occurs through a small number of channels.  For neutron-
induced reactions, the general expression for a cross section as a function of energy with an exit
channel c is given by the following equation (ENDF-102, 1991):

Note that the subscripts n and c in Eq. (1) correspond to entrance and exit channels, respectively,
and the angular momentum subscripts, R, are implied.  In the subsequent equations, the angular
momentum subscripts are also implied.  In Eq. (1), the exit channel c can be scattering (n),
capture (() or either of the two partial-fission widths (f1 or f2).  The collision matrix is a complex
matrix that is defined as follows:

where
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The total and elastic scattering cross sections can be expressed as a function of energy in
terms of the collision matrix:

and

Likewise, the fission cross section can be calculated in terms of the collision matrix and
corresponding exiting fission channels:

For the subsequent discussion, a matrix D can be defined as follows:

Using Eq. (7), the collision matrix can be expressed in the following format:

An expression for the elastic scattering cross section is obtained by expanding the squared
quantity in Eq. (5) and substituting the expression from Eq. (8) for the collision matrix into the
expanded form of Eq. (5).  After simplification, the following expression is obtained for the elastic
scattering cross section:

In Eq. (9), the neutron subscript (n) is replaced with the value of 1 for the purposes of discussion.
Likewise, in Eq. (9), the phase-shift subscripts correspond to the channel number while the
angular- momentum subscripts are implied. Also, note that Eq. (9) includes an implicit summation
over the channel spin and resonance spin J for the potential scattering contribution.  Additional
details for calculating the potential scattering contribution are provided by Dunn and Greene
(2000).



4

Ft(E) ' 4B

k 2 j
J

gJ 9 (1 & 2sin2N1) ReD11 % sin(2N1) ImD11 % sin2N1 A . (10)

Ff (E) ' 4B

k 2 j
J

gJ 9 |D12|
2
% |D13|

2

A . (11)

Fa(E) ' 4B

k 2 j
J

gJ ReD11 & |D11|
2 . (12)

F
(
(E) ' 4B

k 2 j
J

gJ 9 ReD11 & |D11|
2
& |D12|

2
& |D13|

2

A . (13)

Using a similar procedure as for the elastic scattering cross section, an expression is
obtained for the total cross section by substituting the expression for the collision matrix into
Eq. (4).  Upon further simplification the following expression is obtained for the total cross
section:

An expression for the fission cross section is obtained by expanding the squared quantity in
Eq. (6) and inserting the expression for the collision matrix from Eq. (8) into Eq. (6).  The
resulting equation for the fission cross section has the following form:

In Eq. (11), the first- and second-fission channels are denoted with the values 2 and 3,
respectively.  By subtracting Eq. (9) from Eq. (10), an expression is also obtained for the
absorption cross section as a function of energy:

Likewise, an equation for the capture cross section as a function of energy is obtained by
subtracting Eq. (11) from Eq. (12):

Eqs. (9) through (13) are the Reich-Moore representations for the elastic scattering,  total,
fission, absorption and capture cross sections, respectively.  In the following section, the
numerical aspects of the RM equations are explored in greater detail.

3.  COMPUTATIONAL CONSIDERATIONS

3.1 Absorption and Capture

The Reich-Moore equations that are presented in Section 2 are a function of the complex
matrix D.  The formulation of D as presented in Eq. (7) was initially proposed by Larson (1993)
to circumvent numerical instabilities that can occur when the evaluation of D involves small
differences of large numbers.  Nonphysical oscillations may occur during the calculation of low-
energy capture cross sections for some isotopes, and the reformulation of D as presented in
Eq. (7) was developed to avoid the observed oscillations in the capture cross section.  Despite
the reformulation for D in Eq. (7), unexpected numerical problems can still occur depending upon
the implementation of the absorption, capture or elastic scattering cross section formulae.  In this
section, the conditions that lead to numerical problems in the absorption and capture cross section
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are discussed, and in Section 3.2, conditions that lead to numerical problems with the elastic
scattering cross section are also presented.

As shown in Eq. (12), the absorption cross section calculation involves the computation
of the quantity ReD11 - |D11|

2.  At ORNL, the AMPX module POLIDENT (Dunn and Greene,
2000), which generates continuous energy cross sections from ENDF data, has been used to
process more than 300 ENDF/B-6 evaluations.  Experience with the cross-section calculations
has revealed that a numerical instability can occur for isotopes that have a very small absorption
or capture cross section (e.g., ~10-5) coupled with a detailed resonance structure in the absorption
or capture cross section.  Since D11 is a complex quantity, D11 has the form a + ib.  Consequently,
the quantity |D11|

2 is equal to a2 + b2.  If a and b are less than 1 and the quantity b is approximately
equal to a1/2, the difference calculation in Eq. (12) involves the subtraction of two small numbers
that are approximately equal. If the calculation in Eq. (12) is performed using the double-
precision complex functions that are available in FORTRAN on a very fine energy grid, numerical
instabilities occur for isotopes/nuclides with very small absorption cross-section values.
Therefore, an alternative approach must be used to accurately calculate the absorption cross
section.  

A similar numerical instability problem can occur in the capture cross-section calculation
using Eq. (13) with the complex functions that are available in FORTRAN.  To avoid the
instability problems, the quantity within braces in Eq. (13) must be re-cast into a different form
to accurately calculate the capture cross section.  In the subsequent discussion, alternate forms
of Eqs. (12) and (13) are developed, and calculational results are presented using both the original
and new cross-section formulations.  Although numerical problems are possible with Eqs. (12)
and (13), no problems have been observed in the fission cross section as defined by Eq. (11)
which requires the addition of  |D12|

2 and  |D13|
2.  Therefore, the fission cross section is not included

in the following discussion.

As noted above, the calculation of the absorption cross section requires the evaluation of
the following quantity:

Likewise, the capture cross section requires the computation of the following quantity:

Because n and c represent the entrance and exit channels, respectively, in Eq. (7), the
quantity Dnc is a n × c matrix, and for neutron-induced reactions in the ENDF formulation of the
Reich-Moore equations, Dnc is a 3 × 3 matrix.  To facilitate the development, the matrix quantity
(I - K)-1 can be defined as A, and Dnc is calculated by multiplying A and K.  In order to evaluate
the expressions in Eqs. (14) and (15), the quantities D11, D12 and D13 can be calculated by
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multiplying A and the symmetric matrix K, and the following expressions are obtained for D11, D12

and D13:

The individual elements of the K matrix can be obtained from Eq. (3); however, the elements of
the A matrix require some additional effort.  In order to evaluate the A matrix, the matrix quantity
(I - K) that is defined by Eq. (3) can be defined as B which is a 3 × 3 matrix.  Since A is the
inverse of B, the product of A and B is the identity matrix, and a set of nine equations with nine
unknowns is obtained by the multiplication of A and B.  After some algebraic simplification, the
following equations are obtained for the quantities A11, A12 and A13:

where

The elements of the K matrix are defined in Table 1.
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Table 1  Definitions of the elements of the K matrix+

+Note that a = Er - E, b = '
(
/2.
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An equation for D11 is obtained by substituting the expressions for A11, A12 and A13 into Eq. (16).
Using the expressions for the elements of the K matrix in Table 1, the equation for D11 is
expressed as follows:

where



9

|D11|
2
'

[ "(2R % ") % ((2P % () ]2
% [ "(2P % () & ((2R % ") ]2

[ (2R % ")2
% (2P % ()2 ]2

. (38)

ReD11 & |D11|
2
'

2(R" % P()

(2R % ")2
% (2P % ()2

. (39)

Fa (E) ' 4B

k 2 jJ
gJ

2(R" % P()

(2R % ")2
% (2P % ()2

. (40)

D12 '
& [ f (2R % ") & g (2P % () ]

(2R % ")2
% (2P % ()2

& i [ f (2P % () % g (2R % ") ]

(2R % ")2
% (2P % ()2

, (41)

Using the expression for D11 in Eq. (23), an equation can be developed for 
|D11|

2 = D11 (D11)
*:

An equation for the quantity ReD11 - |D11|
2 is obtained by substituting Eqs. (23) and (38) into

Eq. (14).  After simplification, the following expression is obtained for ReD11 - |D11|
2:

Using Eq. (39), the absorption cross section is obtained as follows:

With regard to the capture cross section, the quantity that is defined by Eq. (15) can be
evaluated by obtaining expressions for |D12|

2 and |D13|
2.  An expression for D12 is obtained by

substituting Eqs. (19) through (21) into Eq. (17).  After the substitution and algebraic
simplifications, the following expression is obtained for D12:
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where

Using the expression for D12 in Eq. (41), an equation can be developed for |D12|
2:

An expression for D13 is obtained by substituting Eqs. (19) through (21) into Eq. (18).  After the
substitution and algebraic simplifications, the following expression is obtained for D13:

where

After multiplying D13 by the complex conjugate, the following expression is obtained for |D13|
2:
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An equation for the quantity ReD11 - |D11|
2 - |D12|

2 - |D13|
2  is obtained by substituting Eqs. (39), (48)

and (52) into Eq. (15):

Using Eq. (53), the capture cross section can be expressed as follows:

In an effort to demonstrate the numerical aspects of the RM formalism, absorption and
capture cross-sections were calculated using Eqs. (12) and (13), respectively.  For the purposes
of discussion, Eqs. (12) and (13) will be referred to as the "original" RM formulation for the
absorption and capture cross sections.  In modern FORTRAN, the evaluation of Eqs. (12) and
(13) can be performed using double precision complex variables, and the subsequent complex
arithmetic is handled by the compiler.  For comparison purposes, Eqs. (40) and (54) were also
used to calculate absorption and capture cross sections as a function of energy, respectively.  The
form of the absorption and capture cross sections as defined by Eqs. (40) and (54) will be referred
to as the "revised" RM formulation for absorption and capture.  The cross-section calculations
were performed with the AMPX module POLIDENT (Dunn and Greene, 2000) that is used to
generate continuous energy cross sections from ENDF data at ORNL.  All the calculations were
performed on a DEC Alpha AS 500/500 workstation.

The capture cross section as a function of energy was calculated for ENDF/B-6 28Si, and
the calculated results for the 298.7 keV d-wave capture resonance are presented in Fig. 1.  Since
28Si is a nonfissionable isotope, the fission channels are empty and the equations for absorption
and capture are equivalent.   For comparison, the capture cross section for 28Si was calculated as
a function of energy using Eq. (54), and the results are also presented in Fig. 1.  Although both
forms of the capture cross section provide the general structure of the resonance, the original RM
formulation leads to a nonphysical oscillatory behavior in the  cross section on the wings of the
capture resonance.  In contrast, the revised RM formulation exhibits a smooth structure over the
resonance.  From a practical standpoint, the oscillations provided by the original formulation are
within the measurement uncertainty of the actual cross-section value; however, the oscillatory
behavior of the original RM formulation does provide numerical convergence problems for an
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Fig. 1  Reich-Moore representation of the ENDF/B-6 28Si 298.7 keV capture resonance.

adaptive energy-meshing scheme that may be used to determine the appropriate energy-grid
structure for the resonance.  Consequently, using the form of the capture cross section as
presented by Eq. (13) is not desirable for generating cross sections in conjunction with an
adaptive energy-meshing scheme as used by POLIDENT.  Implementation of the revised RM
formulation leads to a 1 to 2% increase in CPU time relative to the original RM formulation.
Therefore, the revised RM formulation is relatively inexpensive as compared with the original RM
formulation.  Calculations were also performed for 28Si capture using the Multilevel R-matrix
code SAMMY (Larson, 2000), and no numerical problems were observed with the SAMMY
formulation of the RM approximation.
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3.2  Elastic Scattering

The Reich-Moore expression for the elastic scattering cross section is provided in Eq. (9).
If the single- or double-precision FORTRAN complex functions are used to evaluate Fel(E), a
numerical instability can occur in Eq. (9) under the following condition:

To circumvent the instability problem, an expression can be developed for the quantity within
braces in Eq. (9).  In particular, the following equation can be used to express the quantity within
braces in Eq. (9):

Using the expressions for D11 and |D11|
2 from Eqs. (23) and (38), respectively, an equation can be

developed for qty.  After substituting Eqs. (23) and (38) into Eq. (56) and simplifying the
expression, the following equation is obtained for qty:

 Following a similar procedure for the capture cross section, the elastic scattering cross
section was calculated using Eq. (9), and the form of the elastic scattering cross section in Eq. (9)
will be referred to as the original RM formulation.  For comparison, the quantity in Eq. (57) is
used to evaluated the quantity within braces in Eq. (9).  The form of the elastic scattering cross
section that uses the expression defined by Eq. (57) will be referred to as the revised RM
formulation.  

Using POLIDENT, the elastic scattering cross section as a function of energy was
calculated for ENDF/B-6 60Ni, and the results for the elastic scattering reaction between 4 keV
and 5.4 keV are provided in Fig. 2.  The dip in the 60Ni scattering cross section occurs at
4.91 keV between two p-wave resonances at 2.253 keV and 5.5301 keV.  The original RM
representation for the cross section was generated by using double precision complex FORTRAN
variables to evaluate the matrix D11 and subsequently Eq. (9).  As shown in Fig. 2, the original RM
formulation breaks down between 4.8 keV and 4.9 keV as the scattering cross section approaches
1 × 10-4 barns before the minimum value of 7.74 × 10-5 barns.  In contrast, the revised RM
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Fig. 2  Reich-Moore representation of the ENDF/B-6 60Ni elastic scattering cross section.

formulation provides a smooth structure throughout the dip in the 60Ni elastic scattering cross
section.  As noted for the 28Si capture calculation, the oscillations in the elastic scattering cross
section are within the experimental uncertainty of the actual cross-section value; however, the
oscillatory behavior provides numerical convergence problems for an adaptive energy-meshing
scheme.  Therefore, the revised RM formulation is needed to avoid the numerical instability that
is shown in Fig. 2 for the original RM formulation.  In terms of CPU cost, implementation of the
revised RM formulation relative to the original formulation is the same as observed for the
absorption and capture cross sections (i.e., 1 to 2 % increase in CPU time for the revised RM
formulation).  Note that SAMMY was also used to evaluate the 60Ni elastic scattering cross
section, and no numerical problems were observed with the SAMMY formulation of the RM
approximation.
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4.  CONCLUSIONS

The Reich-Moore (RM) cross-section representation, which is an approximation to
general R-matrix theory, is used extensively in many isotope/nuclide evaluations to describe
neutron cross sections for the resolved-resonance region.  The RM equations involve the
evaluation of complex matrices that are a function of the resonance energy and resonance widths.
With modern FORTRAN, double precision complex variables can be used to evaluate the the RM
equations.  As a result, the burden of complex arithmetic is placed on the FORTRAN compiler.
Using FORTRAN complex arithmetic is adequate for evaluating the RM equations for many
isotopes of interest; however, numerical instabilities with FORTRAN complex operations can
occur for isotopes that are characterized by very small aborption or capture cross-section values
(e.g., ~10-5) with a detailed resonance structure.  The numerical problems occur when the
complex operations involve the subtraction of two small numbers that are approximately equal.
Moreover, the numerical instabilities occur during capture or absorption cross-section
calculations on an very dense energy grid.  Similar numerical instabilities can occur in the elastic
scattering cross-section calculation.  Because of the computational problems associated with the
FORTRAN double precision complex operiations in the RM formulation, alternative expressions
are needed to accurately calculate the absorption, capture and elastic scattering cross-section
values.

This paper presents the conventional RM formulae and identifies the implementation
problems that can lead to numerical instabilities in cross-section calculations for the absorption,
capture and elastic scattering cross sections.  As an alternative, detailed expressions for the
3 × 3 RM equations that can be used to avoid numerical problems in the cross-section calculation
have been developed for calculations in the resolved-resonance region.  

In an effort to test the revised RM equations, cross sections were calculated for ENDF/B-
6 28Si and 60Ni.  All the calculations were performed on a DEC Alpha AS 500/500 workstation
using the AMPX module POLIDENT that is used to generate continuous energy cross sections
from ENDF data.  For 28Si, capture cross sections were calculated for the 298.7 keV d-wave
resonance using FORTRAN double precision complex operations to evaluate the RM equations
(i.e., original formulation). For comparison, the 28Si capture resonance was also calculated using
the alternative or revised RM equations that were developed for this paper.  With the original RM
formulation, nonphysical oscillations were observed on the wings of the 28Si capture resonance;
however, the numerial problems were not observed with the revised RM equations.  Regarding
60Ni, the original RM formulation was used to calculate the elastic scattering cross section as a
function of energy.  At 4.91 keV, 60Ni has a sharp dip in the scattering cross section, and using
the FORTRAN double precision complex operations to evaluate the RM equations leads to
nonphysical oscillations in the elastic scattering cross section between 4.8 and 4.9 keV.  With the
revised RM formulation, the numerical problems are not observed in the elastic scattering
calculation.  In terms of additional computing cost for the absorption, capture and elastic
scattering, the revised RM formulation only leads to a 1 to 2% increase in CPU time relative to
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the original RM formulation.  Therefore, the revised RM formulation is relatively efficient and can
be used to accurately calculate cross sections in the resolved-resonance region.

NOMENCLATURE

* Kronecker delta function
' partial resonance width
N angular momentum hard-sphere phase shift
B pi
E energy (eV)
ENDF Evaluated Nuclear Data File
g statistical spin factor
k neutron-wave number at energy E
I identity matrix
Im imaginary component of a complex quantity
NR number of resonances
ORNL Oak Ridge National Laboratory
Re real component of a complex quantity
RM Reich-Moore
U collision or scattering matrix for neutron-induced reactions

Subscripts

R angular momentum index
( capture cross section or neutron capture width
a absorption cross section
c exit channel
el elastic scattering cross section
J spin of the resonance
n entrance channel for neutron-induced reactions or neutron width
r resonance index
t total cross section

Superscripts

J spin of the resonance
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