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MotivationMotivation

Ultra High Coherent Power (2-10W) In-Phase Synchronization

Ultra Fast (10Gbps) Communication           Attractor Switching
Rates

Desired Properties of Waveform Control of Spatial and Temporal    
Dynamics 



Laser Array as a Dynamical SystemLaser Array as a Dynamical System

• In -phase synchronization in a single array

• Chaotic synchronization of distinct laser 
arrays

• Suppression of chaos in laser arrays
• Control of transient behaviors 

• Fast attractor switching



SynchronizationSynchronization

Ej - complex amplitude
ωj - the frequency
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High Coherent Power Generation Using High Coherent Power Generation Using 
Arrays of Semiconductor LasersArrays of Semiconductor Lasers

High power
laser array

Microlens
array

Injection from a single
frequency laser

(A) N incoherent laser sources

(B) N coherent laser sources

Intensity I ~ N

Intensity I ~ N 2



Attributes/Benefits of this ConceptAttributes/Benefits of this Concept

• Compact high intensity power source

• Potential of order of magnitude increase in 
power

• Cost effective - semiconductor lasers are 
not expensive



Additional (Potential) ApplicationsAdditional (Potential) Applications

• High Speed Image Transmission (in Gbps rate)

• Improved Space Communications                                   
(more power, larger distances)

• Pumping Solid State Lasers



Why has high coherent power not yet Why has high coherent power not yet 
been achieved in lasers ?been achieved in lasers ?

• In-phase behavior of identical lasers is not stable for a 
broad range of parameters

• High power arrays are not stable

• Optics + Lasers + Nonlinear Dynamics & Chaos

• Nontrivial Combination !

Array Synchronization & Stability



What has already been achieved ?What has already been achieved ?

• Phase locking by injection of a single laser

• Synchronization of low power nonchaotic arrays 
of lasers

• Synchronization of two - three chaotic lasers



Basic Equations for Semiconductor Laser Array

Evolution of mode amplitude Ej and population Nj in the jth laser
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Electric field in the jth laser: Ej (t)exp(-iù 0t)
 
Nj        inversion population
Gj gain
ôp         photon lifetime (~1 ps)
ôs         lifetime of the active population (~ 2ns)
p pumping rate
κ magnitude of the coupling strength between adjacent lasers
δj uncoupled laser frequencies
á line-width enhancement factor

)()()( thjthj NNgNGNG −+= g = ∂G/∂N - the differential gain and G(Nth) = 1/τp
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Electric field in the jth laser: E j (t)exp(-iù 0t) 

Gj the gain
ôf         fluorescence time (~240µs)
ôs         cavity round trip time  (~ 2ns)
p pumping rate
κ magnitude of the coupling strength between adjacent lasers
δj detunings
á losses

Equation of Motion for Semiconductor Laser ArrayEquation of Motion for Semiconductor Laser Array
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Stability Analysis of the Phase ModelStability Analysis of the Phase Model



Stability of the “InStability of the “In--phase” Solutionphase” Solution

* In-phase solution is not stable for a wide range of parameters.

* Instead, the “Out-of-phase” solution (φj +1 - φj = π) 
is stable, leading to a destructive interference.

* When operated at high power - lasers show chaotic behavior.
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Injection of the same electromagnetic field in to the cavity of each laser 
results in stabilization of the “in-phase behavior”.  
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Injection Tuning

Two Coupled LasersTwo Coupled Lasers
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Analysis of the Phase ModelAnalysis of the Phase Model
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NonmonotonicityNonmonotonicity Transition PointTransition Point



NonmonotonicityNonmonotonicity
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Comparison of the Analysis with Comparison of the Analysis with 
Numerical SimulationsNumerical Simulations



Commonly Used Array ArchitecturesCommonly Used Array Architectures

MOPA/Injection Locking

Single, stable mode from 
master oscillator Master 

Oscillator

Power Amplifiers
or Slaves

Coupled Oscillators

Evanescent or Leaky Wave-coupled (side by side)
Longitudinally coupled (end-to-end)

External Cavities
External
reflector



• Beam injection into each laser
– achieve distribution controlled injection under micro-

optic geometrical constraints

• Phase locking the array
– though lasers are almost identical, the desired in-phase 

state is unstable for a broad range of parameters

• Beam collection

– Fusing outcoming beams without losing phase coherence

ChallengesChallenges



ApproachApproach

• Control output power of array by changing the amplitude and the 
frequency of the injected field

• Modulate injected field to produce a high power modulated output
field

• Achieve coupling by feedback from neighboring lasers
– enables us to control coupling strength

• Our starting point is an uncoupled array
– λ = 810 nm     d = 500 micron
– Because of large separation between array elements, we can control 

injection



Experimental ApparatusExperimental Apparatus



Schematic Diagram of ExperimentSchematic Diagram of Experiment

Laser
Array

Lens
Array SLM2

SLM1

BS3

Power Meter
Far-field CCD

Near-Field CCD
Scanning Fabry-Perot
Monochrometer
Interferometer

Slit

BS2 

CGH __ Computer Generated Hologram,        SLM __ Spatial Light Modulator,    BS __ Beamsplitter

Isolator

Collimator1

1:21 CGH

Collimator2

BS1

Master laser

Nearest neighbor
       coupling

Half-wave plate

Reverse Telescope



Injection amplitude
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Proposed DesignProposed Design

• control the injection amplitudes and phase distribution to 
each laser separately

• control the form and the strength of the coupling between 
lasers

• measure the amplitudes and the phases of each laser 
separately



Combining Experimental Measurements Combining Experimental Measurements 
with Numerical/Theoretical Analysiswith Numerical/Theoretical Analysis

a) Computation and analysis of the equations of motion for a 
specific arrays of lasers.

b) Estimation of the range of parameters where the experimental 
probability for obtaining high power output radiation from the array 
is maximized. 
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