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Abstract

In this paper, we consider the regulation control problem
for a two-degree-of-freedom (2-DOF), underactuated overhead
crane system. Inspired by recently designed passivity-based
controllers for underactuated systems, we design several con-
trollers that asymptotically regulate the gantry position and
payload position. Specifically, utilizing LaSalle’s Invariance
Set Theorem, we first illustrate how a simple proportional-
derivative (PD) controller can be utilized to asymptotically reg-
ulate the overhead crane system. Motivated by the desire to
achieve improved transient performance, we then design two
nonlinear controllers that increase the coupling between the
gantry position and the payload position.

1 Introduction

The operation of overhead crane systems in many industrial
settings is achieved by relying on the skill of experienced crane
operators. Unfortunately, precise payload positioning (i.e.,
the operator using only visual feedback to position the pay-
load) is difficult due to the fact that the payload is free to swing
in a pendulum-like motion. Furthermore, the payload swings
can result in several performance and safety concerns includ-
ing: i) damage to the payload (e.g., spillage or breakage), ii)
damage to the surrounding environment or personnel, and iii)
large internal forces that can result in reduced payload carry-
ing capacity or premature failure of stressed parts. Motivated
by the practical desire to achieve fast and reliable response
with reduced cost and high precision positioning, several re-
searchers have developed controllers for the overhead crane
systems.

Most of the early research for overhead crane systems tar-
geted simplified crane models. Specifically, in [10], a control
design was developed for a reduced-order model of the crane
system that incorporated the actuator dynamics. In [21], Yu
et al. utilized singular perturbation techniques to design a
nonlinear feedback controller which consists of a slow portion
to make the payload follow a desired trajectory with a fast
portion that was superimposed to eliminate oscillations and
sway; however, an approximate linearized model of the system
was utilized to facilitate the construction of the error systems.
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In [11], Noakes et al. discussed some hardware and software
modifications that enable existing overhead crane systems to
be utilized for developing swing-free algorithms. In [13] and
[14], Sakawa et al. developed control algorithms to transfer the
payload to a desired position with minimal payload swing for
rotary crane systems. In [20], Yashida et al. proposed a satu-
rating control law based on a guaranteed cost control method,
however, the proposed controller was designed for a simplified
linearized version of the system dynamics. An approximate
crane model was also utilized by Martindale et al. in [9] to
develop exact model knowledge and adaptive controllers. An
adaptive controller was also designed in [3] using a modal de-
composition technique. In [4], Chung and Hauser designed a
nonlinear controller for regulating the swinging energy of the
payload. For a survey of other control designs that are based
on linearized models of overhead crane systems, including re-
search that eliminates the rigid cable assumption, see [2], [12],
and the references within.

One of the limiting factors in most of the above control de-
signs is that the system nonlinearities were excluded from the
closed-loop error system and control development. To over-
come this drawback, some control researchers have targeted
the development of controllers that account for the nonlinear
dynamics of the crane system and similar underactuated con-
trol problems (e.g., inverted pendulum, ball and beam, etc.).
Specifically, in [16] and [18], Teel employed saturation func-
tions to achieve a global asymptotic (and local exponential)
stability result. In [17], Teel also utilized saturation functions
to develop an output feedback controller which achieves a ro-
bust, semi-global stability result for the ball-and-beam con-
trol problem. In [2], Burg et al. adopted the ball-and-beam
solution given in [16] and [18] to address the overhead crane
problem. That is, Burg et al. transformed the nonlinear crane
dynamics into a set of new dynamic equations resembling the
ball-and-beam problem and then employed a controller with
saturation functions to guarantee asymptotic positioning from
a large set of initial conditions.

Recently, some researchers have utilized a passivity-based
approach to address the control of underactuated systems such
as the crane. Specifically, [8] and [6] proposed passivity-based
controllers for the inverted pendulum and the pendubot (i.e.,
an inverted pendulum-like robot with an unactuated second
link). These exciting new results are based on the paradigm
of driving the underactuated system to a homoclinic orbit us-
ing an energy-based nonlinear controller and then switching
to a linear controller to stabilize the system around its un-
stable equilibrium point. Using similar stability analysis tech-
niques, Collado et al. proposed a proportional-derivative (PD)



controller for the overhead crane problem. In [7], Kiss et al.
developed a PD controller for a vertical crane winch system
that only requires the measurement of the winch angle and its
derivative rather than a cable angle measurement.

In this paper, we first utilize similar stability analysis tech-
niques as those given in [8] to prove that a PD controller can
asymptotically regulate the nonlinear crane dynamics. Moti-
vated by the desire to achieve increased transient performance,
we then develop two nonlinear controllers. The first controller
follows a similar design as that outlined in [8]. Specifically,
additional nonlinear terms are injected into the controller by
squaring the energy in the Lyapunov function and adding an
additional gantry squared velocity term in the Lyapunov func-
tion. The second controller is constructed by utilizing a stan-
dard energy term in the Lyapunov function in addition to
a gantry kinetic energy-like term. When compared to the
standard PD controller, both of these controllers contain ad-
ditional nonlinear terms which tend to increase the coupling
between the gantry position and the payload position. The in-
creased coupling between the gantry position and the payload
position is a desirable characteristic that provides for improved
transient response (e.g., reduced overshoot and faster settling
time).

The paper is organized as follows. In Section 2, we present
the dynamic model of the overhead crane system, and in Sec-
tion 3, we rewrite the open-loop system in a more convenient
form. In Section 4, we develop the PD controller and the
two nonlinear controllers and examine the stability of the con-
trollers through a Lyapunov-like stability analysis. Conclud-
ing remarks are given in Section 5.

2 Dynamic Model

The dynamic model for a 2-DOF overhead crane system (see
Figure 1) is assumed to have the following form [5]

M(q)g+ Vin(g: )+ G(q) = u (1)
where q(t) € R? is defined as follows
g=[z(t) 0" (2)

where z(t) € R' denotes the gantry position, 0(t) € R' denotes
the payload angle with respect to the vertical, and M(q) €
R?*2 V,.(q,q) € R**?, G(q) € R?, and u(t) € R? are defined
as follows

| me+my —mpL cosf
M(q) = { —mpLcos® my,L? _ ’
. 0 Lsin 06
Ve = | g g, )

G@)=[0 mpgLsind |", wit)y= [F 0]",
where m., m, € R* represent the gantry mass and the payload
mass, respectively, I € R! represents the length of the rod to
the payload, g € R" represents the gravity coefficient, and
F(t) € R' represents the control force input acting on the
gantry (see Figure 1). Based on the structure of M(q) and
Vim(q, q) given in (3), it is straightforward to show that the
following skew-symmetric relationship holds

¢ (%M(cn = V(g 4)) £€=0 VEeR )

where M (g) represents the time derivative of M(g). In a sim-
ilar manner as [2] and [9], we assume that the dynamic model
given in (1) and (3) have the following characteristics.

Assumption 1: The payload and the gantry are connected
by a mass-less, rigid link.

Assumption 2: The angular position and velocity of the
payload and the rectilinear position and velocity of the
gantry are measurable.

Assumption 3: The payload mass is concentrated at a point
and the value of this mass is exactly known; moreover,
the gantry mass and the length of the connecting rod are
exactly known.

Assumption 4: The hinged joint that connects the payload
link to the gantry is frictionless.

Assumption 5: The angular position of the payload mass is
restricted according to following inequality

—T<Ot)<m (5)
where 6(t) is measured from the vertical position (see
Figure 1).

F

Figure 1: Schematic for the Overhead Crane System

Remark 1 Note that the model given by (1) could be modi-

fied to include other dynamic effects associated with the gantry

dynamics (e.g., gantry friction); however, these additional dy-
namic effects were not included in the model since these effects
can be directly cancelled by the controller.

3 Open-Loop System Develop-
ment

To express (1) in a form that facilitates the subsequent control
development and stability analysis, we premultiply both sides
of (1) by M~"(g) to obtain the following expression

G=M"(u—=Vni—G) (6)
where M~(q) € R**? is defined as follows

-1 1 my L2 mpL cosf (7)
" det(M) | mpLcos® me+my

and det(M) denotes the determinant of M (g) which is explic-
itly defined as follows

det(M) = (me +myp sin” 0) mpL°. (8)



After substituting (3) and (7) into (6) and preforming some
algebraic manipulation, we obtain the following dynamics for
each degree of freedom

Bl ©)
0= #(0) ((F — mypLsin 992) cosf — (me + mp)gsin 0)
(10)

where the auxiliary terms m(0), ¢(0,0) € R' are defined as
follows
m(0) = me +my sin?6 > 0

(1)

(0,0) = mysin0 (L(.)2 + gcos 0) . (12)

After utilizing (9) and performing some additional algebraic
manipulation, the dynamics for 6(t) given in (10) can also be
written in the following convenient form

(13)

.1
0= 7 cos 0 — %sin@.

To facilitate the subsequent Lyapunov-based control design,
we develop an expression for the energy of the overhead sys-
tem, denoted by E(q,q) € R, as given below

. 1. .
(g, q) = 54" M(q)d +mpgL (1 — cos0) > 0.
After taking the time derivative of (14), substituting (1) for
M(q)g(t), and canceling common terms, we obtain the follow-
ing expression for the time derivative of the energy

(14)

E=iF (15)

where (3) and (4) were utilized.

4 Control Development

Our control objective is to regulate the gantry position of the
overhead crane to a constant desired position denoted by zq4 €
R* while also regulating the payload angle to zero. To quantify
the objective of regulating the gantry position to a constant
desired position, we define a gantry position error signal e(t) €
R as follows

(16)

In the subsequent control development, we will design a
proportional-derivative control law and two nonlinear con-
trollers to achieve the stated control objective.

e(t) =z — zq.

4.1 Proportional-Derivative Control Law

Based on the subsequent stability analysis, we design the fol-
lowing proportional-derivative (PD) control law

—kgt — k
= ZfdT — Fpe (17)
kg
where kq, kg, kp € R' are positive constant control gains.

Theorem 1 The controller given in (17) ensures asymptotic
regulation of the overhead crane system in the sense that

z(t) 0(t) )= za

where xq represents the constant desired gantry position.

tlggo( z(t) 0(t) 0 0 0) (18)

Proof: To prove Theorem 1, we define the following non-
negative function

1, 2

Vi = kB + Shye (19)

where E(q,¢) and e(t) were defined in (14) and (16), respec-

tively. After taking the time derivative of (19) and substi-

tuting (15) and the time derivative of (16) into the resulting

expression for F(q, ¢) and é(t), respectively, we obtain the fol-
lowing expression

Vi =i (kpF + kpe) . (20)

After substituting (17) into (20) for F'(t), we obtain the fol-

lowing expression

Vi = —kai® (21)

which implies that the origin of the closed-loop system is stable
in the sense of Lyapunov [15] and that x(t), ©(t), 6(t), F(t) €
Loo.

In a similar manner as [8], we will employ LaSalle’s invari-
ance theorem to prove (18). To this end, we define I" as the
set of all points where

Vi=0. (22)
In the set T, it is clear from (21) and (22) that
z(t) = 0. (23)

From (22) and (23), we can conclude that z(t) and Vi(t) are
constant, and that

i(t) =0 (24)
Furthermore, from (15), (16), and (23), it is clear that
E(q,q) = ¢(t) =0. (25)

Based on (25), it is clear that F(q,¢) and e(t) are constant
and from (17), (22), and (23), we can also prove that F'(t) is
constant. To complete the proof, we use similar arguments
as those given in [8] to examine the cases when §(t) = 0 and
when 0(t) # 0.

Case 1. O(t) =0

Based on the assumption that (t) = 0, we can conclude
that
o(t) = 0. (26)
Given (23) through (26), it is straightforward from (13) to see
that
s(0,0) =0 and

sin(0) = 0 (27)

where ¢(0,0) was defined in (12), and hence, from Assumption
5, it is also clear that
0(t) = 0. (28)

From (23) through (26) and the assumption that (t) = 0, we
can utilize (1) and (3) to show that
F(t)=0. (29)

Given (23), (28), and (29), we can utilize (16) and (17) to
prove (18).

Case 2. O(t) #0



In this case, we prove that the assumption 0(t) # 0 leads
to a contradiction. To this end, we multiply (9) by m(0), take
its time derivative, then substitute the time derivative of (12)
for ¢(0,0,0), and substitute (13) into the resulting expression
for O(t) to obtain the following expression

F o= m(0)i+m(0)z® +m,0 (Lé2 cos O + g cos” 0)(30)

+my0 (2sin 0 (cos i — gsind) — g sin” 0)

where the notation (-)*) represents the i —th time derivative
of a signal. After dividing (30) by mp0(t) and utilizing the

fact that

cos’f =1 —sin” 0, (31)
we obtain the following expression
Lcos00” + g —4gsin® (0) = Sy (32)
where the auxiliary signal S;(t) € R* is defined as
S1 = F = m(0)# - m@)a _ 2sin 0 cos 0. (33)

mp0

To continue the analysis, we take the time derivative of (32),
substitute (13) into the resulting expression for f(t), and di-
vide by —6(t) to obtain the following expression

Lsin0° + 10gsin0cos0 = ~ 5+ 2cos? 03 (34)
where S1 (t) is given by the following expression
S1 _ F- m(0)E — Qﬁl(Q?x(3) _ m(@)x(zl) -

mp0

0 (F — ()i — m(@)x(g))

2
mpl

—9sin 6 cos 0z + 20 (Sin2 0 — cos> 9) .

After taking the time derivative of (34), dividing by 0(t), sub-
stituting (13) into the resulting expression for the occurrence
of G(t) in the left side, and then utilizing (31), we obtain the
following expression

L cos 00° +22gcos’f — 12g = % — 2sinf cos 0% (36)

where the auxiliary signal S2(t) € R' is defined as follows

- (sae - Slé)

5 +2 cos? 02® — 4sin 0 cos 016

So = (37)

and Si(t) is given by the expression below

g F® —m®(0)i — 3i(0)2® — 3m(0)z®
1 = 0

mp

(38)

7m(0);1?(5) - 20 (F —m(0)& ;Qm(e)x( ))

mp0

0 (4)
49 ()m(é)).:;

mp

i) (F — (07 — m(@)x(3)>

mpf

— 25in 0 cos 0z

3
mp0

20 (F — (07 — m(@)x(3)>

+

mp0
+ (2090 + 20 + 200®) (sin® 0 — cos” 0)

—|—892jé sin f cos 6.

Finally, we take the time derivative of (36), divide it by 0(t),
and then substitute (13) into the resulting expression for the
occurrence of (t) in the left side to obtain the following ex-
pression

Lsin09” + 46gsin 0 cos 0 = —% + 2cos” 0i (39)

where the auxiliary signal S3(t) € R' is defined as follows

S3 = w +2 (sin2 0 — cos® 0) 0 —2sin 0 cos 023 (40)
0

where S5 (t) and S§3) (t) are given by the following expressions

o _(S§3>992319<3>)+2é(§1(;Slé)

+2 cos? 0z — 8sin O cos 8z — 4sin 0 cos 030

—45&92 (cos2 0 — sin? 9)

3 (41)

@ _ m@® ez — (3) (3)
ng) F m'*(0)z : 4m'>(0)x (42)
mp
—6rn(0)x™® — 41n(0)z® — m(0)z®
)
Y F® —m®0)i — m(0)z®
i

35 <2T'r'z(0)x(3) — 3m(0)z® — m(0)z®) )

mpf

30) (F — i(0)i — 2m(0)2®) — m(@):c(4))

2
mpl

60° (F — 1n(0)F — 21 (0)z® — m(@)x(4)>
+ .
mp03

oW (F — 1n(0)F — m,(9):c(3)>

2
mp0

600 (F — 1n(0)F — m(@)x(3))
+ —
mp0

66° (F — 1 (0)F — m(@):c(3)>

m,p94
+ (~221 + 2408 + 2400 ) sin 0 cos 0
+ (602 + 6090 + 205 — 803
(sin2 0 — cos® 0)
Based on the facts that
FD =0, 209 =o,

i>1, (43)



it is straightforward from (33), (35), (37), (38), (40), (41), and
(42) to show that (34) and (39) can be rewritten as follows,
respectively

Lsin00” + 10gsinfcosh =0 (44)

Lsin00” + 46gsin 0 cosf = 0. (45)
After comparing (44) to (45), it is clear that based on the

assumption that 0(t) # 0, the following expression must be
true

sinf =0 (46)

for (44) and (45) to be valid. However, after differentiating
(46), we can conclude that

cosf =0 (47)
based on the assumption 0(t) # 0. Since (46) and (47) can-
not hold simultaneously, the assumption that 0(t) # 0 must
be invalid, and hence, the arguments given for case 1 can be
utilized to prove (18). W

4.2 The E? Coupling Control Law

Based on previous work presented in [8], we design the follow-
ing E? coupling control law?

kus(0,6)

. m(0)
keFE + er)

—kqt — k,,e +
F =

(48)

where m(0) was defined in (11), ¢(0,0) was defined in (12),
E(q,q) was defined in (14), m, is given in (3), and kq, kp, kg,
k, € R! are positive constant control gains.

Theorem 2 The controller given in (48) ensures asymptotic
regulation of the overhead crane system in the sense that

lim ( z(t) @(t) 0t) )= ( za

t— oo

o(t) 0 0 0) (49)

where xq represents the constant desired gantry position.

Proof: To prove Theorem 2, we define the following non-
negative function

LieB? 4 12 4 1

Ve =35 2 2

kye®. (50)
After taking the time derivative of (50) and substituting (9),
(15), and the time derivative of (16), into the resulting ex-
pression for E(q,q), ©(t), and é(t), respectively, we obtain the
following expression

W%))F_%Mpe).

Vo =i <<kEE+ (51)
After substituting (48) into (51) for F(t), we obtain the fol-
lowing expression )

Vo = —kqi” (52)
which implies that the origin of the closed-loop system is stable
in the sense of Lyapunov [15] and that z(t), ©(t), 6(¢), F(t) €

2The control strategy is called an E2 coupling control law be-
cause its structure is spawned from a squared energy term in the
Lyapunov function and an additional gantry squared velocity term
in the Lyapunov function.

L. In a similar manner as in the proof of Theorem 1, we
define I as the set of all points where

Vo =0. (53)
In the set T, it is clear from (52) and (53) that
z(t) = 0. (54)

and hence, we can conclude that z(t) and Va2(t) are constant,
and that

#(t) = 0. (55)
Furthermore, from (15), (16), and (54), it is clear that
E(q,q) = (t) = 0. (56)

Based on (56), it is clear that E(q,q) and e(t) are constant.

Similar to the proof of Theorem 1, we can now divide the
rest of the analysis into two cases. For the case of G(t) =0,
we can easily follow case 1 in the proof of Theorem 1 to prove
the result given by (49). For the case of 0(t) # 0, we first
note that we can utilize (9) to rewrite (48) in the following
equivalent form?

—kpe — kqt — kol

keE '
It is now clear from (54), (55), (56) and (57) that F(t) is
constant; hence, the result given in (49) can now be obtained

by following the same analysis in the proof of Theorem 1 for
case 2. l

F =

(57)

4.3 Gantry Kinetic Energy Coupling
Control Law

To illustrate how additional controllers can also be derived,
we design the following nonlinear coupling control law*

—kai: — kpe + ke (g(o, §) — my sin O cos 9@)@)
kE + k'u

F= (58)
where ¢(6,0) was defined in (12), m, is given in (3), and kg,
kp, kv, kg € R are positive constant control gains.

Theorem 3 The controller given in (58) ensures asymptotic
regulation of the overhead crane in the sense that

Jim (2(t) () 6(1) 0t) )=(=za 0 0 0) (59)

where xq represents the constant desired gantry position.

Proof: To prove Theorem 3, we define the following non-
negative function

Va =kpE + liwn(é)):'ﬁ + 1kpe2.

2 2
After taking the time derivative of (60) and substituting (9),
(15), and the time derivative of (16), into the resulting ex-

pression for ©(t), F(q, ), and é(t), respectively, we obtain the
following expression

(60)

V=i ((kE + ko) F — kus(0,0) + kumy sin 0 cos 00 + kpe>
(61)

3Since 8(t) # 0, we can use (14) to show that E(g,q) > 0, and
hence, the denominator of (57) does not go to zero for this casc.

1The control strategy is called a gantry kinetic energy coupling
control law because its structure is spawned from an additional
gantry kinetic energy term in the Lyapunov function.



After substituting (58) into (61) for F(t), we obtain the fol-
lowing expression

Vs = —kqgi?. (62)

In a similar manner as in the proof of Theorem 1, we define I'
as the set of all points where

Vs =0. (63)
In the set T, it is clear from (62) and (63) that
z(t) =0 (64)

and hence, we can conclude that z(t) and Vs(t) are constant,
and that

Z(t)=0 (65)
Furthermore, from (15), (16), and (64), it is clear that
B(q,4) = é(t) =0 (66)

Based on (66), it is clear that E(q,q¢) and e(t) are constant.

Similar to the proof of Theorem 1, we can now divide the
rest of the analysis into two cases. For the case of G(t) =0,
we can easily follow case 1 in the proof of Theorem 1 to prove
the result given by (59). For the case of O(t) # 0, we first
note that we can utilize (9) to rewrite (58) in the following
equivalent form

_ —kpe — kai — kym(0)E — Sko1n(0)

F 2
ke

(67)

It is now clear from (64), (65), (66) and (67) that F(t) is
constant; hence, the result given in (59) can now be obtained
by following the same analysis in the proof of Theorem 1 for
case 2. W

5 Conclusion

In this paper, we have presented three controllers for an over-
head crane system. By utilizing a Lyapunov-based stability
analysis along with LaSalle’s Invariance Theorem, we proved
asymptotic regulation of the gantry position and payload po-
sition for a PD controller and two nonlinear controllers. Fu-
ture work will focus on leveraging off of the current results to
develop controllers for an overhead crane with a gantry that
moves in a 2-DOF Cartesian plane (versus the 1-DOF motion
allowed for the gantry in the present crane assembly).
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