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Abstract

In this paper, a learning-based feedforward term is developed to solve a general control prob-
lem in the presence of unknown nonlinear dynamics with a known period. Since the learning-
based feedforward term is generated from a straightforward Lyapunov-like stability analysis, the
control designer can utilize other Lyapunov-based design techniques to develop hybrid control
schemes that utilize learning-based feedforward terms to compensate for periodic dynamics and
other Lyapunov-based approaches (e.g., adaptive-based feedforward terms) to compensate for
non-periodic dynamics. To illustrate this point, a hybrid adaptive/learning control scheme is
utilized to achieve global asymptotic link position tracking for a robot manipulator.

1 Introduction

Many industrial applications require robots to perform repetitious tasks including: assembly, ma-
nipulation, inspection, etc. Given the myriad of industrial applications that require a robot to move
in repetitive manner, researchers have been motivated to investigate control methods that exploit
the periodic nature of the robot dynamics, and hence, increase link position tracking performance.
As a result of this work, many types of learning controllers have been developed to compensate for
periodic disturbances. Some advantages of these controllers over other approaches include: i) the
ability to compensate for disturbances without high frequency or high gain feedback terms, and ii)
the ability to compensate for time-varying disturbances that can include time-varying parametric
effects.

Some of the initial learning control research targeted the development of betterment learning
controllers (see [2] and [3]). Unfortunately, one of the drawbacks of the betterment learning con-
trollers is that the robot is required to return to the same desired initial configuration after each
learning trial. Moreover, in [14], Heinzinger et al. provided several examples that illustrated the
lack of robustness of the betterment learning controllers to variations in the initial conditions of
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the robot. To address these robustness issues, Arimoto [1] incorporated a forgetting factor in the
betterment learning algorithm given in [2] and [3]. Motivated by the results from the betterment
learning research, several researchers investigated the use of repetitive learning controllers. One of
the advantages of the repetitive learning scheme is that the requirement that the robot return to the
exact same initial condition after each learning trial, is replaced by the less restrictive requirement
that the desired trajectory of the robot be periodic. Some of the initial repetitive learning control
research was performed by [13], [28], and [29]; however, the asymptotic convergence of these basic
repetitive control schemes can only be guaranteed under restrictive conditions on the plant dynamics
that might not satisfied. To enhance the robustness of these repetitive control schemes, researchers
in [13] and [28] modified the repetitive update rule to include the so-called Q-filter. Unfortunately,
the use of the Q-filter eliminates the ability of the tracking errors to converge to zero. In the search
for new learning control algorithms, researchers in [15] and [20] proposed an entirely new scheme
that exploited the use of kernal and influence functions in the repetitive update rule; however, this
class of controllers tends to be fairly complicated in comparison to the control schemes that utilize
a standard repetitive update rule.

In [26] and [30], iterative learning controllers (ILCs) were developed that do not require differen-
tiation of the update rule, so that the algorithm can be applied to sampled data without introducing
differentiation noise. In [4], [5], [6], and [31], ILCs were developed to address the motion and force
control problem for constrained robot manipulators. In [7], Cheah and Wang develop a model-
reference learning control scheme for a class of nonlinear systems in which the performance of the
learning system is specified by a reference model. In [32], Xu and Qu utilize a Lyapunov-based
approach to illustrate how an ILC can be combined with a variable structure controller to handle a
broad class of nonlinear systems. In [10], Ham et al. utilized Lyapunov-based techniques to develop
an ILC that is combined with a robust control design to achieve global uniformly ultimately bounded
link position tracking for robot manipulators. The applicability of this design was extended to a
broader class of nonlinear systems by Ham et al. in [11]. Recently, several researchers (see [8],
[12], [16], and [17]) have utilized a class of multiple-step “functional” iterative learning controllers
to damp out steady-state oscillations. As stated in [17], the fundamental difference between the
previous learning controllers and the controllers proposed in [8], [12], [16], and [17], are that the ILC
is not updated continuously with time, rather, it is switched at iterations triggered by steady-state
oscillations. Han et al. utilized this iterative update procedure in [12], to damp out steady-state
oscillations in the velocity set-point problem for servo-motors. The work in [12] was extended by
[8] to compensate for friction effects and applied in [16] to VCR servo-motors (see [21] and [22] for
a comprehensive review and tutorial on ILC).

Upon examination of some of the aforementioned work, it seems that many of the recent ILC and
repetitive control results exploit a standard repetitive update rule as the core part of the controller;
however, to ensure that the stability analysis! validates the proposed results, the authors utilize
many types of additional rules in conjunction with the standard repetitive update rule. As we show
in this paper, these additional rules and additional complexity injected into the stability analysis, are
not necessary for the development of learning controllers that utilize the standard repetitive update
rule. We also conjecture that a statement concerning the boundedness of learning controllers made
in [20] may have caused some researchers to: i) attempt a modification of the standard repetitive
update rule with additional rules, or ii) abandon the use of the standard repetitive update rule
entirely. To clarify the above statements, we present the following simple, closed-loop system

&= —z+¢(t) — ¢ (1) (1)

'We also note that the proofs of the stability associated with this work tend be rather complex.




where z(t) € R' is a tracking error signal, ¢(t) € R' is an unknown nonlinear function, and
@ (t) € R! is a learning-based estimate of ((t). It is assumed that the unknown nonlinear function
©(t) is periodic with a known period T' (i.e., p(t — T') = ¢(t)). For the system given by (1), the
standard repetitive update rule is given by

pt)=¢(t—=T)+u. (2)

With regard to the error system given (1) and (2), Messner et al. [20] noted that the techniques
used in [20] could not be used to show that ¢(t) is bounded if ¢(t) is generated by (2). To address
the boundedness problem associated with the standard repetitive update rule, Sadegh et al. [25]
proposed to saturate the entire right-hand side of (2) as follows

p(t) = sat (p(t =T) + ), (3)

and hence, guarantee that ¢(t) is bounded for all time (the function sat (-) is the standard linear
piecewise bounded saturation function). Unfortunately, it was not exactly clear from the analysis
given in [25] how the Lyapunov-based stability analysis accommodates the saturation of the standard
repetitive update rule (e.g., it is well known how one can apply a projection algorithm to the adaptive
estimates of a gradient adaptive update law and still accommodate the Lyapunov-based stability
analysis).

In this paper, we attempt to address the above issues via a modification of the standard repetitive
update rule. That is, as opposed to (3), we saturate the standard repetitive update rule as follows

o(t) =sat (p(t—T)) + . (4)

We then utilize a Lyapunov-based approach to: i) illustrate how the stability analysis accommodates
the use of the saturation function in (4), ii) prove that x(¢) is forced asymptotically to zero, and
iii) show that ¢(¢) remains bounded. To illustrate the generality of the learning-based update law
given by (4), we apply the update law to force the origin of a general error system with an nonlinear
disturbance with a known period to achieve global asymptotic tracking. To illustrate the fact
that other Lyapunov-based techniques can be exploited to compensate for additional disturbances
that are not periodic, we design a hybrid adaptive/repetitive learning scheme to achieve global
asymptotic link position tracking for a robot manipulator. In comparison with the previous work
of [8], [12], [16], and [17], we note that: i) the proposed learning-based controller utilizes standard
Lyapunov-based techniques, and hence, one can easily fuse in other Lyapunov-based tools, ii) the
stability analysis is straightforward, iii) the proposed learning-based controller utilizes a simple
modification of the standard repetitive update rule as opposed to use of a multiple step process or
menu, and iv) the proposed control scheme is updated continuously with time during the transient
response (versus during the steady-state), and hence, an improved transient response is facilitated.

This paper is organized as follows. In Section 2, we present the error dynamics for a general
problem, develop a learning-based algorithm, and utilize a Lyapunov-based stability analysis to
prove a global asymptotic tracking result. In Section 3, we develop a hybrid adaptive/learning
algorithm for robot manipulators that compensates for dynamics with periodic and non-periodic
components. In Section 4, we demonstrate the effectiveness of the learning algorithm through
experimental results obtained from a 2-link revolute, direct-drive robot manipulator. Concluding
remarks are given in Section 5.



2 General Problem

To illustrate the generality of the proposed learning control scheme, we consider the following error
dynamics examined in [20]

é=f(te)+ B(te)[wt) —w(t)] ()

where e(t) € R™ is an error vector, w(t) € R™ is an unknown nonlinear function, w(t) € R™ is a
subsequently designed learning-based estimate of w(t), and the auxiliary functions f(¢,e) € R™ and
B (t,e) € R™™ are bounded provided e(t) is bounded. In a similar manner as [20], we assume that
(5) satisfies the following assumptions.

Assumption 1: The origin of the error system e(¢) = 0 is uniformly asymptotically stable for
e=f(te); (6)

furthermore, there exists a first-order differentiable, positive-definite function Vi(e,t) € R!, a
positive-definite, symmetric matrix Q(t) € R™*", and a known matrix R(t) € R™*™ such that

Vi < —e'Qe+e"Rlw — 1] . (7)

Assumption 2: The unknown nonlinear function w(t) is periodic with a known period T'; hence,
w(t —T) =w(t). (8)

Furthermore, we assume that the unknown function w(t) is bounded as follows
lw; ()| < B, fori=1,2,....m 9)

where g = [ By By . B, } € R™ is a vector of known, positive bounding constants.

2.1 Control Objective

The control objective for the general problem given in (5) is to design a learning-based estimate
w (t) such that
lim e(t) = 0 (10)

t—o00
for any bounded initial condition denoted by e(0). To quantify the mismatch between the learning-
based estimate and w (t), we define an estimation error term, denoted by @ (¢) € R™, as follows

W(t) = w(t) — (t). (11)

2.2 Learning-Based Estimate Formulation

Based on the error system given in (5) and the subsequent stability analysis, we design the learning-
based estimate w (t) as follows

W(t) = satg (W (t —T)) + k.R'e (12)

where k. € R! is a positive constant control gain, and satg (-) € R™ is a vector function whose
elements are defined as follows

satg; (&;) = { sgn él) 8. for |§Z= § gl Ve, eRYi=1,2,...,m (13)



where [3; represent the elements of § defined in (9), and sgn (-) denotes the standard signum function.
From the definition of satg (-) given in (13), we can prove that (see Appendix A)

(&1 — §2i)2 > (satg; (§1;) — sats (§2i))2 VIEul < Bi,8q € RYi=1,2,..,m. (14)

To facilitate the subsequent stability analysis, we substitute (12) into (11) for w(t) and w(t), re-
spectively, to rewrite the expression for w(t) as follows

W = satg (w(t —T)) — satg (w (t — T)) — k.Re. (15)
where we utilized (8), (9), and the fact that
w(t) = sats (w(t)) = saty (w(t - T)) (16)
2.3 Stability Analysis
Theorem 1 The learning-based estimate defined in (12) ensures that
lim e(t) = 0 (17)

for any bounded initial condition denoted by e(0).

Proof: To prove Theorem 1, we define a non-negative function Vs (¢, e, w) € R! as follows

Vo=V + 2;@ /t_T [sats (w(r)) — satg (@ (7)]" [satg (w(r)) — sats (@ (7))] dr (18)

where V) (t,e) was described in Assumption 1. After taking the time derivative of (18), we obtain
the following expression

V, < —e"Qe+ "R (19)
+226 [sats (w(t)) — satg (i (t))]" [sats (w(t)) — satg (b (t))]
—226 [satg (w(t —T)) — satg (w (t — T))]T [satg (w(t —T)) — satg (w (t —T))]

where (7) was utilized. After utilizing (15), we can rewrite (19) as follows

Vo < —"Qe+ "R — = (i + k.RTe)" (@ + k.RTe) (20)

2k,

+21ke [satp (w(t)) — sats (@ (t))]" [sats (w(t)) - sats (@ (¢))].

After performing some simple algebraic operations, we can further simplify (20) as follows

. k.
V, < —€f (Q + ERRT> e (21)

—226 [IDTIB — [satg (w(t)) — satg (W (t))]T [satg (w(t)) — satg (W (t))]| -




Finally, we can utilize (9), (11), and (14) to simplify (21) as shown below
Va < —€eTQe. (22)

Based on (18), (22), and the fact that @ is a positive-definite symmetric matrix, it is clear that
e(t) € L3N L. Based on the fact that e(t) € Lo, it is clear from (5), (12), (13), and (15) that
w(t), w(t), f(t,e), B(t,e) € L. Given that w(t), w(t), f(t,e), B(t,e) € L, it is clear from

5) that é(t) € L, and hence, e(t) is uniformly continuous. Since e(t) € L2 N Lo, and uniformly
continuous, we can utilize Barbalat’s Lemma [18] to prove (17).

Remark 1 From the previous stability analysis, it is clear that we exploit the fact that the learning-
based feedforward term given in (12) is composed of a saturation function. That is, it is easy to
from the structure of (12), that if e(t) € L then w(t) € Loo.

3 Hybrid Adaptive/Control Example

In the previous section, we exploited the fact that the unknown nonlinear dynamics, denoted by
w(t), were periodic with a known period T. Unfortunately, some physical systems may not ad-
here to the ideal assumption that all of the unknown nonlinear dynamics are entirely periodic.
Since the learning-based feedforward term, developed in the previous section, is generated from a
straightforward Lyapunov-like stability analysis, we can utilize other Lyapunov-based control de-
sign techniques to develop hybrid control schemes that utilize learning-based feedforward terms to
compensate for periodic dynamics and other Lyapunov-based approaches (e.g., adaptive-based feed-
forward terms) to compensate for non-periodic dynamics. To illustrate this point, we now develop a
hybrid adaptive/learning control scheme for a n-rigid link, revolute, direct-drive robot manipulator
in the following sections.

3.1 Dynamic Model

The dynamic model for a n-rigid link, revolute, direct-drive robot is assumed to have the following
form [18]
M(q)§+ Vin(q,4)q + G(q) + Fag + Fs(q) =7 (23)

where ¢(t), 4(t), G(t) € R™ denote the link position, velocity, and acceleration vectors, respectively,
M(q) € R™™ represents the link inertia matrix, V,,(q,q) € R™ " represents centripetal-Coriolis
matrix, G(q) € R" represents the gravity effects, F; € R™*™ is the constant, diagonal, positive-
definite, viscous friction coefficient matrix, F; € R™ " is a constant, diagonal, positive-definite,
matrix composed of static friction coefficients, and 7(¢) € R" represents the torque input vector.
With regard to dynamics given by (23), we make that the standard assumption that all of the terms
on the left-hand side of (23) are bounded if ¢(t), ¢(¢), and §(t) are bounded.

The dynamic equation of (23) has the following properties [18] that will be used in the controller
development and analysis.

Property 1: The inertia matrix M(q) is symmetric, positive-definite, and satisfies the following
inequalities
2 2 n
ma [[€l]° < €7 M(q)€ < ma €] VEeR (24)

where my, my are known positive constants, and ||-|| denotes the standard Euclidean norm.



Property 2: The inertia and centripetal-Coriolis matrices satisfy the following skew-symmetric
relationship

& (30 - Vol ) =0 weeR (29

where M(q) denotes the time derivative of the inertia matrix.

Property 3: The norm of the centripetal-Coriolis, gravity, and viscous friction terms of (23) can
be upper bounded as follows

V(@ Dllise < Calldll,  NG@DI<C¢p Fallig < Cpa (26)

where (., C,, (4 € R' denote known positive bounding constants, and ||-[|,,, denotes the
infinity-norm of a matrix.

In addition to the above properties, we will also make the following assumption with regard the
static friction effects that are contained in (23).

Assumption 3: The static friction terms given in (23) can be linear parameterized as follows

Yo(@)fs = Fi(q) (27)

where 6, € R" contains the unknown, constant static friction coefficients, and the regression
matrix Y;(¢) € R™™ contains known functions of the link velocity ¢(t) € R™.

3.2 Control Objective

The control objective is to design a global link position tracking controller despite parametric
uncertainty in the dynamic model given in (23). To quantify this objective, we define the link
position tracking error e(t) € R™ as follows

e=qq—q (28)

where we assume that ¢;(t) € R™ and its first two time derivatives are assumed to be bounded,
periodic functions of time with a known period T such that

q(t) =qat —=T)  qat) =da(t = T) Ga(t) = Ga(t = T). (29)

In addition, we define the difference between the actual parameter vector and the estimated para-
meter vector as follows

0, =0,—0, (30)

where 0,(t) € R" represents a parameter estimation error vector and ,(¢) € R™ denotes a subse-
quently designed estimate of 6.

3.3 Control Formulation

To facilitate the subsequent control development and stability analysis, we reduce the order of the
dynamic expression given in (23) by defining a filtered tracking error-like variable r(t) € R" as
follows

r=é+ae (31)



where o € R! is a positive constant control gain. After taking the time derivative of (31), pre-
multiplying the resulting expression by M (q), utilizing (23) and (28), and then preforming some
algebraic manipulation, we obtain the following expression

Mr=—-V,r+w,+x+Y0,—7 (32)

where the auxiliary expressions w,(t), x(t) € R™ are defined as follows
wy = M(qa)Ga + Vin(qa; Ga)ga + G(qa) + Fada (33)
X = M(q) (Ga + aé) + Vin(q, 4) (da + ae) + G(q) + Fug — w;. (34)

By exploiting Properties 1 and 3 of the robot dynamics, and then using (28) and (31), we can utilize
the results given in [24] to prove that

[l < o (llz[D) = (35)

where the auxiliary signal z(t) € R?" is defined as

T

2(t) = [ e(t) r(t) ] (36)
and p(-) € R! is a known, positive bounding function. Furthermore, based on the expression
given in (33) and the boundedness assumptions with regard to the robot dynamics and the desired

trajectory, it is clear that
lwei(8)] < B4 fori=1,2,...n (37)

where 3, = [ Bris ooy Bim ] € R™ is a vector of known, positive bounding constants.
Given the open-loop error system in (32), we design the following control input

7= kr+ kap? (|2]) 7 + € + 0y + Yab, (38)

where k, k, € R! are positive constant control gains, p(-) was defined in (35), w,(t) € R" is
generated on-line according to the following learning-based algorithm

Wy (t) = satg (w.(t —T)) + krr (39)

kz € R! is a positive, constant control gain, satg,(-) is defined in the same manner as in (13), and the
parameter estimate vector 04(t) € R™ is generated on-line according to the following gradient-based
adaptation algorithm

b,(t) = Ty Tr (40)

where I'; € R™*" is a constant, diagonal, positive-definite, adaptation gain matrix.
To develop the closed-loop error system for r(t), we substitute (38) into (32) to obtain the
following expression

Mi = —Vyr —kr — e+ Y0, + @, + x — knp® (||2]) 7 (41)
where 0,(t) was defined in (30), and @, (t) is a learning estimation error signal defined as follows
Wy, = Wy, — Wy (42)

After substituting (39) into (42) for w,(t), utilizing the fact that w,(¢) is periodic, and then utilizing
(37) to construct the following equality

w,(t) = satg, (w.(t)) = satg, (w.(t —1T)), (43)
we can rewrite (42) in the following form
W, = satg, (wy(t —T)) — satg (W, (t —T)) — krr. (44)



3.4 Stability Analysis
Theorem 2 Given the robot dynamics of (23), the proposed hybrid adaptive/learning controller
given in (38), (39), and (40), ensures global asymptotic link position tracking in the sense that

tlirgloe(t) =0 (45)
where the control gains o, k, ky, and kr, introduced in (31), (38), and (39) must be selected to satisfy
the following sufficient condition

k 1
min (a k+ L) T (46)
Proof: To prove Theorem 2, we define a non-negative function V3(t) € R! as follows
vy = %eTe + %TTMT + %Z)frglés (47)
t
i [ Isatar (7)) = sati, (o (7)) [saty, (ur () = saty (i (7)] dr.
After taking the time derivative of (47), we obtain the following expression
(48)

el (r —ae) +rt (—k:'r’ —e—kup? (||2]]) 7 + Vi, + 0, + X) — 9STYST7“

Vs =
2,1 [satp, (w: (1)) — sats, (@ ()] [satg, (w,(t)) — sats, (@ (t))]
~ o5, satsr (wr(t = T)) = sats, (i (¢ = )" [satsr (w,(t —T)) — satg, (@, (t = T))]

where (25), (31), (40), and (41) were utilized. After utilizing (35), (37), (44), and then simplifying

the resulting expression, we can rewrite (48) as follows
Vs < —aele—krTr+rTa, + [p([l) 2 7] = Kap® (121 [I7[1°]
1
——— (W, + k)" (W + kpr)
2ky,

(49)

g, [satsr (wn(t)) — satg: (i ()] [satg, (w. (1)) — sats, (@ (t))].

After expanding the second line of (49) and then cancelling common terms, we obtain the following

expression

. kr,
Vy < —ae e—(k+ )rTr+[p<||z||>||z|| el -

1 7. 4. . .

g (18 = [saty (u:(1)) — sty (s ()] [sat, (wr(0)) = saty, (@ (1))]

By exploiting the property given in (14), completing the square on the bracketed term in the first
line of (50) (or simply utilizing the nonlinear damping tool [19]), and then utilizing the definition

of z(t) given in (36), we can simplify the expression given in (50) as shown below

. ) kr 1 2
< - L) ,
Vs < <m1n (a,k+ 5 ) 4kn) IE| (51)

9

P> (111 lI77] (50)



Based on (36), (46), (47), and (51), it is clear that e(t), 7(t) € L2 N L. Based on the fact that

r(t) € Lo, it is clear from (31), (39), and (44) that w,(t), @.(t), é(t) € Lo, and hence, e(t) is
uniformly continuous. Since e(t) € L5 N Lo and uniformly continuous, we can utilize Barbalat’s
Lemma [18] to prove (45). B

Remark 2 From the previous stability analysis, it is again clear that we exploit the fact that the
learning-based feedforward term given in (39) is composed of a saturation function. That is, it is
easy to see from the structure of (39), that if r(t) € Lo then w,(t) € Lo

4 Experimental Results

To illustrate the effectiveness of the proposed learning-based controller, the following controller?
was implemented on a two-link direct drive, planar robot manipulator manufactured by Integrated
Motion Inc. [23]

T =kr +w, (52)

where 7(t) was defined in (31) and 0, (t) is generated according to (39). The two-link robot is
directly actuated by switched-reluctance motors. A Pentium 266 MHz PC running RT-Linux (real-
time extension of Linux OS) hosted the control algorithm. The Matlab/Simulink environment with
Real Time Linux Target [33] for RT-Linux was used to implement the controller. The Servo-To-Go
I/0 board provided for data transfer between the computer subsystem and the robot. The two-link
IMI robot has the following dynamic model [23]

Ti| _ | Pt 2psca patpsca || Gy | | TPsS2e —p3s2(di +do) | | @
T2 P2 + p3c2 P2 2 P3s2(1 0 ‘)

n Ja 0 ¢ n fs1 0 sgn (¢1)

0 fa P 0 feo sgn (g2)
where p; = 3.473 [kg-m?], po = 0.193 [kg-m?], p3 = 0.242 [kg-m?|, f4; = 5.3 [Nm-sec], fso = 1.1 [Nm-
sec], fo = 8.45 [Nm], fs2 = 2.35 [Nm], sgn(-) denotes the standard signum function, c;=cos(gz), and

s9=sin(g). The experiment was performed using the following periodic desired position trajectory
(see Figure 1)

g ] T (0.8 +0.25in(0.5¢)) sin (0.5sin(0.5¢)) (1 — exp (—0.6¢%))
[ qa2(t) } N { (0.6 4 0.2sin(0.5¢)) sin (0.5 sin(0.5t)) (1 — exp (—0.6t3))

where the exponential term was included to provide a “smooth-start” to the system.
The experiment was performed at a control frequency of 1KHz. After a tuning process, the
control gains were selected as follows

k = diag {40,12} , a = diag {20, 14}, kr = diag{30,10} (55)

where diag {-} denotes the diagonal elements of a matrix. Note that in previous sections the control
gains k, a, and ky, are defined as scalars for simplicity, whereas in (55), the control gains are selected
as diagonal matrices to facilitate the “tuning” process. The link position tracking errors are depicted
in Figure 2. Note that the tracking error reduces after each period of the desired trajectory. The
control torque input for each link motor is shown in Figure 3 where the learning component of the
controller is given in Figure 4.

(53)

[rad] (54)

?During experimental trials, we determined that the proposed learning-based controller did not require the non-
linear damping term and the adaptive feedforward term utilized in (38) to provide good link position tracking
performance.
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Link 1 Desired Trajectory [rad]

Link 2 Desired Trajectory [rad]

Link 1 Positioning Error [deg]

Link 2 Positioning Error [deg]
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5

Conclusion

In this paper, we illustrate how a learning-based estimate can be used to achieve asymptotic tracking
in the presence of a nonlinear disturbance. Based on the fact that the learning-based controller
estimate is generated from a Lyapunov-based stability analysis, we also demonstrated how additional
Lyapunov-based design techniques can be utilized to reject components of the unknown dynamics
which are not periodic. Specifically, we designed a hybrid adaptive/learning controller for the robot
manipulator dynamics. Experimental results illustrated that the link tracking performance of a
2-link robot manipulator improved at each period of the desired trajectory due to the mitigating
action of the learning estimate.

References

1]

2]

3]

[6]

8]

[9]

S. Arimoto, “Robustness of Learning Control for Robot Manipulators”, Proceedings of the
IEEFE International Conference on Robotics and Automation, 1990.

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering Operation of Robots by Learning”,
Journal of Robotic Systems, Vol. 1, No. 2, pp. 123-140, 1984.

S. Arimoto, S. Kawamura, and F. Miyazaki, “Realization of Robot Motion Based on a Learning
Method”, IEEFE Transactions on Systems, Man, and Cybernetics, Vol. 18, No. 1, pp. 126-134,
1988.

C. C. Cheah, D. Wang, and Y. C. Soh, “Convergence and Robustness of A Discrete-Time
Learning Control Scheme for Constrained Manipulators”, Journal of Robotic Systems, Vol. 11,
No. 3, pp. 223-238, 1994.

C. C. Cheah, D. Wang, and Y. C. Soh, “Learning Control of Motion and Force for Constrained
Robotic Manipulators”, International Journal of Robotics and Automation, Vol. 10, No. 3, pp.
79-88, 1995.

C. C. Cheah, D. Wang, and Y. C. Soh, “Learning Control for a Class of Nonlinear Differential-
Algebraic Systems with Application to Constrained Robots”, Journal of Robotic Systems, Vol.
13, No. 3, pp. 141-151, 1996.

C. C. Cheah and D. Wang, “A Model-Reference Learning Control Scheme for a Class of Non-
linear Systems”, International Journal of Control, Vol. 66, No. 2, pp. 271-287, 1997.

S.-I. Cho and I.-J. Ha, “A Learning Approach to Tracking in Mechanical Systems with Fric-
tion”, IEEE Transactions on Automatic Control, Vol. 45, No. 1, pp. 111-116, 2000.

B. Costic, M. S. de Queiroz, and D.M. Dawson, “A New Learning Control Approach to the
Active Magnetic Bearing Benchmark System”, Proc. of the American Control Conference,
Chicago, 1L, pp. 2639-2643, 2000.

C. Ham, Z. Qu, and R. Johnson, “A Nonlinear Iterative Learning Control for Robot Manipula-
tors in the Presence of Actuator Dynamics”, International Journal of Robotics and Automation,
in press.

13



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Ham, Z. Qu, and J. Kaloust, “Nonlinear Learning Control for a Class of Nonlinear Systems”,
Automatica, to appear.

S. H. Han, Y. H. Kim, and I.-J. Ha, “Iterative Identification of State-Dependent Disturbance
Torque for High Precision Velocity Control of Servo Motors”, IEEE Transactions on Automatic
Control, Vol. 43, No. 5, pp. 724-729, 1998.

S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Control Systems: A New Type Servo
System for Periodic Exogenous Signals”, IEEE Transactions on Automatic Control, Vol. 33,
No. 7, pp. 659-668, 1988.

D. Heinzinger, B. Fenwick, B. Paden, and F. Miyazaki, “Robot Learning Control”, Proceedings
of the IEEE Conference on Decision and Control, 1989.

R. Horowitz, “Learning Control of Robot Manipulators”, ASMFE Journal of Dynamic Systems,
Measurement, and Control, Vol. 115, pp. 402-411, 1993.

Y.-H. Kim and I.-J. Ha, “A Learning Approach to Precision Speed Control of Servomotors
and Its Application to a VCR”, IEEE Transactions on Automatic Control, Vol. 43, No. 5, pp.
724-729, 1998.

Y.-H. Kim and I.-J. Ha, “Asymptotic State Tracking in a Class of Nonlinear Systems via
Learning-Based Inversion”, IEEE Transactions on Automatic Control, Vol. 45, No. 11, pp.
2011-2027, 2000.

F. Lewis, C. Abdallah, and D. Dawson, Control of Robot Manipulators, New York: MacMillan
Publishing Co., 1993.

M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control Design, New
York: John Wiley and Sons, Inc., 1995.

W. Messner, R. Horowitz, W.-W. Kao, and M. Boals, “A New Adaptive Learning Rule”, IEEE
Transactions on Automatic Control, Vol. 36, No. 2, pp. 188-197, 1991.

K. L. Moore “Iterative Learning Control — An Expository Overview”, Applied and Computa-
tional Controls, Signal Processing, and Circuits, Vol. 1, pp. 151-214, 1999.

K. L. Moore, Iterative Learning Control for Deterministic Systems, Springer-Verlag, Advances
in Industrial Control, London, U.K., 1993.

Direct Drive Manipulator Research and Development Package Operations Manual, Integrated
Motion Inc., Berkeley, CA, 1992.

N. Sadegh and R. Horowitz, “Stability and Robustness Analysis of a Class of Adaptive Con-
trollers for Robotic Manipulators”, Int. J. Robot. Res., Vol. 9, No. 9, pp. 74-92, June, 1990.

N. Sadegh, R. Horowitz, W. W. Kao, and M. Tomizuka, “A Unified Approach to the Design
of Adaptive and Controllers for Robot Manipulators”, ASMFE Journal on Dynamic Systems,
Measurement, and Control, Vol. 112, pp. 618-629, 1990.

M. Sun, D. Wang, “Sampled-Data Iterative Learning Control for Nonlinear Systems with
Arbitrary Relative Degree”, Automatica, Vol. 37, pp. 283-289, 2001.

14



[27] M. Tomizuka, “On the Design of Digital Tracking Controllers”, ASME Journal on Dynamic
Systems, Measurement, and Control”, 50th Anniversary Issues of the ASME Journal on Dy-
namic Systems, Measurement, and Control, 1992.

[28] M. Tomizuka, T. Tsao, and K. Chew, “Discrete-Time Domain Analysis and Synthesis of Con-
trollers”, ASME Journal on Dynamic Systems, Measurement, and Control, Vol. 111, pp. 353-
358, 1989.

[29] M. Tsai, G. Anwar, and M. Tomizuka, “Discrete-Time Control for Robot Manipulators”, Pro-
ceedings of the IEEE International Conference on Robotics and Automation, pp. 1341-1347,
1988.

[30] D. Wang, “On D-type and P-type ILC Designs and Anticipatory Approach”, International
Journal of Control, Vol. 23, No. 10, pp. 890-901, 2000.

[31] D. Wang, Y. C. Soh, and C. C. Cheah, “Robust Motion and Force Control of Constrained
Manipulators by Learning”, Automatica, Vol. 31, No. 2, pp. 257-262, 1995.

[32] J.-X. Xu and Z. Qu, “Robust Iterative Learning Control for a Class of Nonlinear Systems”,
Automatica, Vol. 34, No. 8, pp. 983-988, 1998.

[33] Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Dawson, “Real- Time Linux Target: A
MATLAB-Based Graphical Control Environment”, Proc. of the IEEE Conference on Control
Applications, Anchorage, AK, pp. 173-178, September 2000.

A Inequality Proof

To prove the inequality given in (14), we divide the proof into three possible cases as follows.

Case 1: [&y;| < By, |€ai| < B
From the definition of satg, () given in (13), we can see that for this case

satg, (€1) =& satg, (€2i) = a4 (56)

After substituting (56) into (14), we obtain the following expression

(€1 — 521)2 = (Satﬁi (&) — Satﬁi(fzi))Q for [§1;] < By, 1€l < B; (57)

hence, the inequality given in (14) is true for Case 1.
Case 2a:((y;| < B;, &y > 0;
From the definition of satg, (-) given in (13), it is clear for this case that

(§oi + Bi) = 2€; for |§1;] < 8,60 > B, - (58)

After multiplying both sides of (58) by (£, — ;) and then simplifying the left-hand side of the
inequality, we can rewrite (58) as follows

where we have utilized the fact that &,; — 3; > 0 for this case. After adding the term £2; to both
sides of (59) and then rearranging the resulting expression, we obtain the following expression
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£ — 26060 + &5, > €1, — 28,61, + G- (60)
Based on the expression given in (60), we can utilize the facts that
satg, (1) = &1, satg, (€2:) = 0; (61)

to prove that

(&1 — €2z’)2 > (Satﬁi (&13) — sat/gi({’%))Q for |§;] < 8,60 > B, (62)

Case 2b:[¢,| < 8;, &y < —P;
From the definition of satg, (-) given in (13), it is clear for this case that

(o — Bi) < 26y, for |£y;] < B;,60 < —5;. (63)

After multiplying both sides of (63) by (&, + ;) and then simplifying the left-hand side of the
inequality, we can rewrite (63) as follows

&5 — 87 > 2(&y + B) & (64)

where we have utilized the fact that &,, + 3, < 0 for this case. After adding the term &2, to both
sides of (64) and then rearranging the resulting expression, we obtain the following expression

€1y — 260,60 + €5 2 &3 + 20,61 + 57 (65)
Based on the expression given in (65), we can utilize the facts that
satg, (§15) = &1 satg, (£5;) = —13; (66)
to prove that
(61— &2)" 2 (saty, (61:) —sats, (6))"  for [61:] < B & < —B; (67)

hence, we have proven that (13) is true for all possible cases.
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