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ABSTRACT 

This paper analyzes the short pulse laser propagation through tissues for development of a time-resolved optical tomography 
system for detection of tumors and inhomogeneities in tissues. Traditional method for analyzin, 0 optical transport in tissues is the 
parabolic or diffusion approximation in which the energy tlux is assumed proportional to the fluence (intensity averaged over all 
solid angles) gradients. The inherent drawback in this model is that it predicts intinite speed of propagation of the optical signal. 
In this paper accurate hyperbolic or wave nature of transient radiative transfer formulation is used to overcome such drawbacks. 
The transmitted and reflected intensity distributions are obtained usin, 0 hyperbolic PI and discrete ordinates method and ,me + 
results are compared with the parabolic diffusion PI approximation. Parametric study of tissue thickness, pulse width, scattering 
and absorption coefficients of tissues, tumor location, size and properties, and scattering phase function distribution is also 
performed to analyze their effect on the transmitted and reflected optical signals. 
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1. INTRODUCTION 

Time-resolved optical tomography is an example of short-pulse laser interactions with scattering and absorbing media such as 
biological tissues, which is of great scientific and engineering interest.“2’3’4’“‘“‘7 The nascent field of optical tomography for 
medical imaging is made possible by a spectral window in the visible and infrared wavelength region where light absorption is 
very small and scattering dominates. ‘J Optical methods are a recent addition to the arsenal of non-invasive diagnostic tools 
available for the detection of disease, such as x-ray computed tomography, magnetic resonance imaging, positron emission 
tomography, single photon emission computed tomography, ultrasound imagin,, u and electrical impedance tomography. In 
optical tomography a short pulse laser is focused on the region to be probed and the time dependent scattered fluence rates are 
measured at different locations using ultrafast detectors. It is the intent of the method to obtain information about the interior 
of the tissue medium non-invasively from the time-resolved fluence or intensity measurements. But before the development of 
the inverse algorithm it is critical to develop accurate forward transient radiative transfer models, which will match the 
experimental results. 

Short pulse probing techniques have distinct advantages over conventional very large pulse width or cw lasers primarily due 
to the additional information conveyed about tissue interior by the temporal variation of the observed signal. When 

:‘:li,;i:;~,;-~~~;~:i.. Conventional cw laser sourties are utilized the information available is the magnitude of the net attenuation and the’angular /i :;;:,.:. ,.,,, r 

distribution of the transmitted or reflected signal. The scattered, reflected, and transmitted signals measured when short pulse 
lasers interact with scattering-absorbing media like tissues possess a unique feature compared to the steady state or cw laser 
measurements. The distinct feature is the multiple scattering induced temporal signature that persists for time periods greater 
than the duration of the source pulse and is a function of the source pulse width, the scattering and absorbing properties of the 
medium, and the location in the medium where the properties undergo changes. If the detection is carried out at the same short 
time scale (comparable to the order of the pulse width), the signal continues to be observed even at large times after the pulse 
has been off due to the time taken for the photons to migrate to the detector after multiple scattering in the media. Moreover, 
steady state measurements are somewhat cumbersome because they require several independent measurements at different 
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source-detector spacing to yield the optical properties of interest. Another technique that is commonly used for biomedical 
itiaging is to collect the ballistic or snake-like photons by an appropriate gating technique. But tracking these ballistic 
photons may not be of practical use for thicker tissue samples.’ 

Most previous studies have considered the parabolic diffusion approximation,“4~7’8.“.‘0 which is derived from the complete 
transport equation by neglecting certain time derivative terms from radiative transport equation, except a brief discussion by one 
researcher.” Some of the studies cited have experimentally investigated short pulse laser transport through tissues and have 
indicated that the parabolic approximation is adequate for thick tissue samples only. Also, these parabolic models have been 
shown not to match experimental results in other cases.2.‘13’2 The commonly used parabolic model also suffers from a major 
drawback that it produces infinite speed of propagation of radiation transport through the medium. Monte-Carlo simulation, 
which includes finite s 

P 
eed of propagation of radiation transport, has been considered by many researchers but at a great 

computation expense.“‘1.“4 The Monte-Carlo results also have been shown not to match the parabolic diffusion results for tissue 
samples of smaller thickness.‘” By an order-of-magnitude scaling analysis it can be shown that the diffusion approximation breaks 
down for laser pulses in the order of picoseconds or less. Also, this approximation cannot accurately account for the change in 
properties at internal interfaces. Therefore, analysis of time-resolved optical tomography with the goal of detection of tumors in 
tissues cannot be accurately performed by invoking these assumptions. Some discussions of these limitations can be found in the 
literature.“‘““’ In addition, most of the previous works have not considered or have used a simplified form of scattering phase 
function distribution and this will lead to inaccurate transmitted and retlected signal results. 

In this paper the transmitted and reflected optical signals from the tissue samples are obtained using the damped-wave hyperbolic 
PI and discrete ordinate method. Results are also obtained for the parabolic diffusion approximation in order to compare with the 
hyperbolic models. It is shown that the temporal shape and spread of the radiation signals obtained by the consideration of the 
complete transient radiative transfer equation using the discrete ordinate method are significantly different than the commonly 
used parabolic diffusion and hyperbolic PI models. This difference is particularly pronounced during the initial transients and 
therefore is important for analyzing data at short time scales. In addition, for the case of hyperbolic transient models it is observed 
that the model selected has a significant impact on the effective propagation speed of the scattered radiation fields. The effects of 
variation of the tissue thickness, pulse width, scattering and absorption coefficients of tissues, tumor properties and location, 
and scattering phase function distribution on the transmitted and reflected signals are analyzed. 

2. THEORETICAL DEVELOPMENT 

The physical case under consideration is a one-dimensional scattering and absorbin, 0 layered tissue medium with thickness L, 
infinite horizontal extent, and azimuthal symmetry. As an example, inhomogeneities such as tumors having different properties 
from those of the surrounding healthy tissue are present between a depth of Ll and b + ~52 from the tissue surface (see Fig. 1). For 
simplicity, the boundaries of the medium are considered to be non-reflecting and non-refracting. This geometry is chosen in order 
to examine the effects of various parameters with the least additional mathematical complexity. The radiative transfer equation in 
this geometry, assuming azimuthal symmetry and constant properties, is written as’x-20 

where I is the intensity (Wme2sr“), c the speed of light in the medium (= speed of light in vacuum divided by the refractive index 
of the medium), x the Cartesian distance, t the time, 0 the radiative coefficient (e, s, n refer to extinction, scattering, and 
absorption, respectively), p the cosine of f9 where 0 is the polar angle measured from the positive x-axis (see Figure l), p the 
scattering phase function and S the source term. The above is an integro-differential equation where the partial differentials 
represent a hyperbolic form of equation, The radiative transfer method as stated above is taken to be an accurate representation of 
the laser transport through tissues in the time scale of interest. 

The phase function in general can be represented in terms of a series of Legendre Polynomials P,,, as” 

P(O) = L,,p,,,(COSO) 9 (2) 
In=0 



where 0 is the scattering angle, M the order of anisotropy, and a,,, are the coefficients in the expansion. For biological tissues the 
coefficients a, used for the scattering phase function representation are obtained from literature22 and is not repeated here. 
The advantage of this formulation is that, for the one-dimensional plane-parallel geometry and azimuthal symmetry, the phase 
function depends only on the initial and final values of the polar angle, as’* 

where v, is the azimuthal angle. 

The equation of transfer as given by Eq. (1) is complicated because of the integral on the right side corresponding to the in- 
scattering gain term. In order to reduce the integral to a simpler form, two techniques namely the linear spherical harmonics 
expansion (PI) and discrete ordinate method are used in this paper. Brief outlines of these methods are discussed next. 

3.1 Hyperbolic PI model 

Under the PI approximation the intensity is considered to be a linear function of the direction cosine p as follows’8’2”2”: 

Z(x,p,t) =u(x,t) +&q(x,t)p > (4) 

where u is the average intensity over all angles and 9 is the heat flux: 

q(x,t> = Jl(x,pu,t)@Q = 27~ ;.&wMd~ > (6) 
4r( -1 

where a is the solid angle. Details about this method can be found elsewhere in the literature.*’ The resultant hyperbolic wave 
equation is given by2”: 

3 a% a2U ---- 
c2 at2 ax2 c (7) 

where y is an integrated phase function.23 The above equation indicates that while propagation speed of the original laser 

pulse is c, the propagation speed along the x direction of the resultant hyperbolic wave of u is cl&. 

3.2 Parabolic PI approximation 

The parabolic form of the equation, which is widely used in neutron transport24 and has now been adopted by researchers in 
optical tomography applications,25 is obtained by neglecting the first term on left-hand side and last two terms on the right-hand 
side of Eq. (7). It also assumes that the absorption coefficient (& is negligible compared with (cc - ~~ F ). The resulting classical 

diffusion equation is given by” 

1 au 1 d2U --- 

c at 
-+a,u=$jyQ 9 

3(1- y>o,: + 0” ax2 (8) 

Equation (8) implies an infinite speed of propagation of the optical signal. 



3.3 Hyperbolic discrete ordinate method 

The discrete ordinate method is based on a weighted, non-uniform discrete representation of the directional variation of the 
radiation intensity. In this method the integral on the right hand side of Eq. (1) is replaced by a quadrature, such as Gaussian, 
Lobatto, or Chebyshev.‘” If p’s are the quadrature points between the limits of integration, -1 to 1, corresponding to a 2K -order 
quadrature, and w;‘s are the corresponding weights, the equation is reduced to the following system of coupled hyperbolic partial 
differential equations 

I a4 w m(“‘- 
c at +‘j ax 

oeli(x,t)+~,=$ w,jz,j(X3t)P(P-,j +y;)+ S(x,/J;,t),i,j+O ) 

I K 

where Ii (x ,t) = I (x, p, t). The Gaussian quadrature of even order is used to avoid the value ,u = 0. The hyperbolic wave speed of 
Ii along the x direction corresponding to the discrete ordinate p has the magnitude of the absolute value of p; c. 

3.4 Source pulse and boundaiy conditions 

The pulsed radiation incident on the tissue medium is a square pulse with a temporal duration (or pulse width), t,,. The intensity in 
the medium can be separated into a collimated component, corresponding to the incident source, and a scattered intensity. If the 
collimated intensity is Z, then I is the remaining part which can be described by Eq. (1). The collimated component of the 
intensity, I,, is represented by 

1, k iu, t> = Iincident exp(-o,x)[fi(t - x/c) - H(t - t,] - x/c)] 6(~ -1) , (10) 

where li,,cidmt is the peak power at the surface, H(t) the Heavyside step function and 6(t) the Dirac delta function. 

The source function S for the scattered intensity tield is then given by 

(11) 

The boundary conditions are such that the intensities pointing inward at x = 0 and x = L are zero, yielding 

z(x=O,~>o,t)=I(x=L,~~oO,t)=O . (12) 

The intensities at the interfaces x = L1 and x = L2 are assumed to be continuous. 

3. RESULTS AND DISCUSSIONS 

The transmitted and retlected signals are obtained numerically by solving the transient radiative transport equation given by Eq. 
(1). Different models used are hyperbolic discrete ordinate method, hyperbolic P1 approximation, and parabolic diffusion 
approximation. For all the cases the grid sizes for both time and space variables are varied within a range of two orders of 
magnitude, and the results are found to be stable and converging. The optical properties considered in this paper correspond to 
biological tissues and tumors.“‘” A forward peaked phase function is used to represent the tissue medium.** 

Figures 2 and 3 show the reflected and transmitted signal for different models for a sample thickness (L) = 5 mm, scattering 
coefficient (& = 6.0 mm-‘, absorption coefficient (on) = 0.012 mm-‘, pulse width (t,,) = 10 ps. The magnitude of transmitted and 
reflected signals for different models match each other only at large times. But at earlier time periods each model predicts a 
different temporal shape and magnitude of the transmitted and reflected signals. The hyperbolic and parabolic PI models give an 
unrealistic negative reflected signal value at small times as evident from Fig. 2 and are clearly not appropriate models for thin 
tissue samples. 



In addition to the magnitude variation, the propagation speed of the scattered radiation is also different. It is evident from Fig. 3 
that the values of the transmitted signals are zero for the hyperbolic model until the value of time taken for the exponentially 
decaying source pulse to traverse the medium at speed of light (c). The scattered radiation traverses the medium at a slower pace, 
depending upon the model selected, and therefore the earliest arriving photons correspond to those from the original laser pulse. 

For the P! model the effective signal propagation speed is c / J 3 and that of the discrete ordinates method is c,u;. When higher 
number of ordinates is used the value of pi approaches unity. The discrete ordinate is expected to constitute the most accurate 
method because it is based on a discrete representation of the directional variation of the radiation intensity. On the other hand, 
the diffusion parabolic model predicts a nonzero transmission signal value even at times less than the propagation time required 
by the laser pulse to traverse the entire medium, which is physically impossible and is clearly evident from Fig. 3. The hyperbolic 
models do not suffer from such drawbacks. The hyperbolic discrete ordinate method, which is the most accurate method, is 
therefore used in this paper. 

Figure 4 shows the transmitted signal for different sample thickness. Smaller the sample thickness higher the peak magnitude 
and smaller will be the temporal spread. The value of the transmitted signal is zero corresponding to the time taken by the 
source pulse to traverse the medium. For a 3 mm thick sample this time corresponds to 13.3 ps, for a 5 mm sample 22.2 PS, 

and for a 7 mm sample 31.1 ps and is demonstrated in FI,. ‘0 4. Figure 5 shows the effect of the phase function distribution on 
the transmitted signal. Most researchers use simple isotropic or linear forward anisotropic phase function distribution to 
analyze short pulse laser propagation through tissues. It is observed from Fl,. ‘0 5 that the decay of the transmitted signal is 
much slower for isotropic and linear forward anisotropic phase function compared to the realistic highly forward anisotropic 
phase function for the case of tissues. The photons tend to remain inside the medium for larger times for isotropic and linear 
anisotropic models and thus will give incorrect transmitted signal values. 

The effect of the variation of the albedo 0 (= (rY /o,) on the reflected signal is depicted in Fig. 6 by considering a multi- 
layered medium, i.e. tissue-inhomogeneity-tissue layer. The albedo of the tumor or inhomogeneity layer (wi,) is varied 
whereas the albedo of the tissue medium (m) is kept constant. Higher the albedo of the inhomogeneity or tumor layer, higher 
will be the scattering and consequently higher will be the magnitude of the reflected signals as evident from the figure. The 
values of the reflected signal are the same until the time taken by the laser pulse to reach the interface of tissue and 
inhomogeneity. The effect of the tumor location from the tissue surface is presented in Fl,. ‘0 7. It is observed from the figure 
that as soon as the laser pulse reaches the tissue-tumor interface an inflection in the retlected signal is observed. This effect is 
more pronounced when the tumor is present closer to the tissue surface, i.e. for smaller LI. Thus Fig. 7 shows that the 
temporal spread of the reflected signal can be used to predict the presence of tumor or inhomogeneity in the tissue medium. 
Figure 8 shows the effect of the laser pulse width on the reflected signal for a multi-layered medium. It is evident from the 
figure that shorter the laser pulse width sharper is the identity of the interface between the tissue and tumor. For 10 ps and 20 
ps pulse width lasers, the inflection point corresponds to the time when the laser pulse is shut off and not to the tissue-tumor 
interface as in the case of 1 ps. For the case of large pulse width laser sources multiple scattering effects will smear out the 
sharp inflection in the reflected signal. 

4. CONCLUSIONS 

This paper presents results of reflected and transmitted signals for the case of short pulse laser transport through biological tissues 
using transient radiative transfer formulation. It is demonstrated that accurate hyperbolic discrete ordinate method should be 
should for such analysis rather than the commonly used parabolic diffusion approximation. The advantage of using short pulse 
laser probing technique is that it provides additional information about the tissue interior. The temporal spread of the reflected or 
transmitted signal can be correlated to the medium properties. The significance of this comprehensive study is that it will provide 
a guidance tool for the development of time-resolved optical tomography for biomedical imaging of tissues. 
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Figure 1. Schematic of the problem under consideration. 
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Figure 2. Reflected signal through a 5 mm tissue medium for different models. 
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Figure 3. Transmitted signal through a 5 mm tissue medium for different models. 
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Figure 4. Transmitted signal through tissue medium of varying thickness. 
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Figure 5. Transmitted signal through a 5 mm tissue medium for different phase function distribution. 
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Figure 6. Reflected signal through a multi-layered medium with inhomogeneity of varying albedo imbedded in it. 
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Figure 7. Reflected signal through a multi-layered medium with different inhomogeneity location from the tissue surface. 
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Figure 8. Reflected signal through a multi-layered medium for different laser pulse width. 


