
header for SPIE use  

Integrated applications of inspection data in the semiconductor 
manufacturing environment 

Kenneth W. Tobina*, Thomas P. Karnowskia, Fred Lakhanib 
 

aOak Ridge National Laboratory, Oak Ridge, Tennessee 
bInternational SEMATECH, Austin, Texas 

 
ABSTRACT 

 
As integrated circuit fabrication processes continue to increase in complexity, it has been determined that data collection, 
retention, and retrieval rates will continue to increase at an alarming rate.  At future technology nodes, the time required to 
source manufacturing problems must at least remain constant to maintain anticipated productivity as suggested in the 
International Technology Roadmap for Semiconductors (ITRS).  Strategies and software methods for integrated yield 
management have been identified as critical for maintaining this productivity.  Integrated yield management must use circuit 
design, visible defect, parametric, and functional test data to recognize process trends and excursions so that yield-detracting 
mechanisms can be rapidly identified and corrected.  This will require the intelligent merging of the various data sources that 
are collected and maintained throughout the fabrication environment.  The availability of multiple data sources and the 
evolution of automated analysis techniques are providing mechanisms to convert basic defect, parametric, and electrical data 
into useful prediction and control information.  Oak Ridge National Laboratory and International SEMATECH have been 
working to develop new strategies and capabilities in integrated yield management based on technologies such as Automatic 
Defect Classification (ADC), Spatial Signature Analysis (SSA), and Automated Image Retrieval (AIR).  In this paper we will 
discuss a survey of these image-based technologies and their application to the ITRS issues that are driving the need for 
integration and data reduction.   
 
Keywords: semiconductor manufacturing, integrated yield management, automatic defect classification, spatial signature 
analysis, content-based image retrieval  
 

1. INTRODUCTION 
Semiconductor manufacturers invest billions of dollars in process equipment, and they are interested in obtaining as rapid a 
return on their investment as can be achieved.  Rapid yield learning is thus becoming an increasingly important source of 
competitive advantage in the complex environment of semiconductor device fabrication.  The sooner an integrated circuit 
device yields, the sooner the 
manufacturer can generate a revenue 
stream.  Conversely, rapid 
identification of the source of yield 
loss can restore a revenue stream and 
prevent the destruction of material in 
process [1].  The 1999 International 
Technology Roadmap for 
Semiconductors (ITRS) states that: in 
the face of this increased complexity, 
strategies and software methods for 
integrated yield management (IYM) 
have been identified as critical for 
maintaining productivity [2].  Figure 
1 represents this statement as a 
function of two critical parameters 
that are highlighted in the ITRS: 
critical particle size, and defect 
sourcing complexity.  Critical particle 
size refers to the minimum size of 
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Figure 1 – Graphical representation of the “needle in the haystack” regarding 
the detection of small defects on complex semiconductor devices.  



particles that can cause electrical faults in an integrated circuit, whereas the complexity factor is the product of the number of 
transistors in a micro-processor by the number of process steps required to manufacture the device.  These two parameters 
work against each other as manufacturers strive to meet future productivity goals in the industry.  The challenge has been 
described as looking for a “needle in a haystack” [3].   
 
Figure 2 demonstrates the current financial impact of the need to develop higher accuracy metrology capabilities and to 
reduce metrology information rapidly for the purpose of making accurate assessments and predictions of the causes of yield 
loss.  Revenue spending for test and metrology (the bulk of which is wafer inspection) approached $10B in 2000 and is 
projected to increase.  This corresponds to an increase in defect inspection expenditures for equipment, software, and support 
from around 1% of revenues in the early 1990’s to over 3% in 2000.  The issues driving these trends are the direct result of 
decreasing line widths (and therefore increased sensitivity to smaller particles), increasing device complexities, and 
increasing wafer dimensions. 
 
To address these complex 
manufacturing issues, the Image 
Science and Machine Vision 
(ISMV) Group of the Oak Ridge 
National Laboratory (ORNL), 
and the Yield Management Tools 
(YMT) Program of International 
SEMATECH (ISMT) have been 
developing new technologies for 
automating the analysis of 
defects found in semiconductors.  
In this paper we will survey our 
work in this area over the past 
decade covering the topics of 
Automatic Defect Classification 
(ADC), Spatial Signature 
Analysis (SSA), Automated 
Image Retrieval (AIR), and the 
integration of these methods in 
the manufacturing environment, 
both as independent methods and 
in support of each other in the 
process of data reduction and 
yield learning.   

2. YIELD MANAGEMENT 
Semiconductor device yield can be defined as the ratio of functioning chips shipped versus the total number of chips 
manufactured.  Yield management can be defined as the management and analysis of data and information from 
semiconductor process and inspection equipment for the purpose of rapid yield learning coupled with the identification and 
isolation of the sources of yield loss.  The worldwide semiconductor market experienced chip sales of $144 billion in 1999 
increasing to $234 billion in 2002 [4].  Small improvements in semiconductor device yield of tenths of a percent can save the 
industry hundreds of millions of dollars annually in lost products, product re-work, energy consumption, and by the reduction 
of waste streams.   
 
It is in the area of yield management that ORNL and ISMT have been developing technologies that are impacting the 
manufacturers ability to rapidly isolate yield loss mechanisms and learn about yield issues for predictive and management 
purposes.  Figure 3 depicts a simplified fabrication flow diagram.  This diagram of production (including front-end and back-
end processing), data management, and yield analysis, in Fig. 3a-d respectively, encapsulates the major components of the 
manufacturing environment where process and product data are generated, maintained, and accessed for yield management. 
 
For our discussion we will focus on data that is generated from the wafer product itself, i.e., as opposed to process 
information such as tool condition data, temperature, pressure, etc.  Figure 3a and 3b shows the process area in the fab where 
bare wafers enter the process, are printed and tested in-line, producing integrated circuits ready for packaging and sale.  
Metrology and defect data that are generated from the wafer are maintained in a variety of databases within the data 
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Figure 2 – Semiconductor industry expenditures of revenues for various 
components of manufacturing.  Note the increase in spending on test and 
metrology and in particular, defect inspection. 

 



management system (DMS).  Wafer defect, parametric, and electrical measurement data are typically maintained in a small 
group of databases (DBs) that are accessed as a virtual repository to facilitate data correlation between what is sensed on the 
wafer in terms of defectivity (e.g., optical or laser scanned images), parametric data (e.g., line widths and film thickness), 
electrical function (e.g., binmap and bitmap), and device yield.  This data is accessed and analyzed by the failure analysis 
laboratory during off-line review and by the yield management team  -  i.e., engineers whose job is to improve current and 
future yield through yield learning and process improvement.  During failure analysis, the wafer can undergo additional 
physical testing off-line to gain a better understanding of pattern, particle, or parametric fault mechanisms by high-resolution 
optical imaging, scanning electron microscopy (SEM), focused ion beam (FIB) cross-section analysis, atomic force 
microscopy (AFM), etc. (Fig. 3d).  This image-based information augments the product-based DB therefore providing a 
historical record for current and future learning and yield prediction.  It is the accumulation and manipulation of this in-line 
and off-line image data that is the basis for our work in yield management automation and the subject of the remainder of this 
paper.  Further discussion of the semiconductor fabrication DMS architecture, function, and future needs can be found in 
references [5, 6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. WAFER DATA ANALYSIS AUTOMATION 
It has been estimated that up to 80% of yield loss in the mature production of high volume integrated circuits can be 
attributed to visually detectable random, process-induced defects (PIDs) such as particulates in process equipment [7, 8].  
Yield learning can therefore be closely associated with the process of defect detection and reduction.  In this section we will 
review our work in the automatic analysis of defect 
image data from in-line inspection and off-line 
review spanning the topics of ADC for individual 
defect classification, SSA for the classification of 
populations of defects, and AIR for the management 
of very large image repositories.  Fig. 4 gives an 
example of the level of information reduction that is 
to be achieved in yield management through 
automation.  This flow diagram is based on ITRS 
specifications for inspection equipment at the 
current technology node (i.e., 180 nm features) and 
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Figure 3 – Stylized representation of the three major components of the semiconductor fabrication 
environment: (a) and (b) front-end and back-end processing, (c) data management, and (d) yield 
analysis. 
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Figure 4 – Typical information reduction target based on 
ITRS specifications for yield learning. 



200 mm diameter wafers at 150 wafers per hour per tool.  In essence, the need is to reduce on the order of 1015 data samples 
per hour to around one dozen potential process sources.  ADC, SSA, and AIR provide automation capabilities that support 
this goal. 
 
1. Automatic Defect Classification 
ADC was initially developed in the early ‘90s to automate the manual classification of defects during off-line optical 
microscopy review [9, 10, 11].  Since this time, ADC technologies have been extended to include optical in-line defect 
analysis and SEM off-line review [12].  For in-line ADC, a defect may be classified “on-the-fly”, i.e., during the initial wafer 
scan of the inspection tool, or during a re-visit of the defect after the initial wafer scan, usually at higher resolution.  During 
in-line detection the defect is segmented from the image using a die-to-die comparison or a method as shown in Fig. 5 [13, 
8].  This figure shows an approach to defect detection based on a serpentine scan of the wafer using a die-to-die comparison; 
first showing A compared to B, B compared to C, etc., ultimately building a map of the entire wafer as shown in Fig. 5c.  
This electronic wafermap forms the primary data record that is maintained in the DMS and provides defect information for 
off-line review and spatial analysis.  During off-line review the defect is re-detected using the specified electronic wafermap 
coordinates and die-to-die methods.  The classification decision derived from the ADC process is maintained in the electronic 
wafermap for the wafer under test and will be used to assist in the rapid sourcing of yield impacting events and for predicting 
device yield through correlation with binmap and bitmap data if available.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In semiconductor applications, the methods used for classifying defects vary greatly, although they are primarily feature-
based.  There are two broad categories of classifier in use: rule-based classifiers with a fixed number of pre-defined classes 
(pre-defined by the system developer), and trainable classifiers that are trained in the field by the end-user.  Fixed-class 
systems have come into popularity for in-line applications since the resolution of these systems is generally less than off-line 
review microscopes.  The reduced sensitivity of the in-line systems results in simple classification schemes that classify 
defects, for example, by size or brightness.  There is no user training of a fixed-class system.  The result is ease-of-use.  The 
down side of this approach is that the system cannot easily be trained to accommodate new defect classes that are 
manufacturer-specific.  A trainable system (e.g., based on distance-based classifiers such k-nearest neighbor or neural 
networks) can accommodate the wide range of defect types associated with different inspection points in the process, various 
process layers, or products, but can be cumbersome to train and maintain.  The concept of having a classifier system that is 
ready to use has prompted the extension of the fixed-classifier concept to some off-line review systems but the lack of 
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Figure 5 – Schematic representation of the typical serpentine defect scanning process in (a) resulting in 
the detection of defects (b), and ultimately in the generation of the wafermap in (c), an electronic record of 
wafer defectivity that is maintained in the DMS. 



classification flexibility is considered to be an undesirable limitation by yield engineers.  Ultimately there will likely be a 
fusion of these two approaches that allows the yield engineer to use the system immediately to classify basic categories of 
defects, while fine-tuning these categories through a training process over time [14].   
 
2. Spatial Signature Analysis 
A spatial signature is defined as a unique distribution of wafer defects originating from a single manufacturing problem [15].  
The analysis of spatial patterns of defects across whole wafers can be described as a means to facilitate yield prediction in the 
presence of systematic effects.  We have developed an automated whole-wafer analysis technique called SSA to address the 
need to intelligently group, or cluster, wafermap defects together into spatial signatures that can be uniquely assigned to 
specific manufacturing processes and tools [16, 17, 18].  This method results in the rapid resolution of systematic problems 
by assigning a label to a unique distribution; i.e., signature, of defects that encapsulate historical experience with processes 
and equipment.  Standard practice in the industry has been to apply proximity clustering to defects that results in a single 
event being represented as many unrelated clusters.  SSA performs data reduction by clustering defects together into 
extended spatial groups and assigning a classification label to the group that reflects a possible manufacturing source.  Figure 
6 shows examples of clustered and distributed defect distributions that are isolated by the SSA technique for both randomly 
occurring defect patterns and systematic patterns.  SSA technology has also been extended to analyze electrical test binmap 
data (i.e., functional test and sort) to recognize process-dependent patterns that result from visible and non-visible (e.g., 
parametric) problems on the wafer [19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SSA is a feature-based system built upon a fuzzy k-Nearest Neighbor (k-NN) classifier [20].  In the manufacturing 
environment, electronic wafermap data is collected from in-line inspection tools and defect signatures are segmented for 
analysis.  For semiconductor inspection, a signature object is defined as a unique pattern of individual optical defects or 
electrical bin codes that were generated by an errant process.  Approximately 30 features are extracted from the segmented 
object and are sent to the classifier where a class label is assigned to the result based on user training. The user-defined class 
result then indicates the specific tool or process that must be corrected [21], e.g., the “spin coater streak” in Fig. 6d. 
 
For industrial pattern recognition problems non-parametric classifiers such as the classical k-NN [22] apply well since 
information about the shape of the distribution of features in the multi-dimensional space of the classifier is not required.  It is 
difficult to ascertain a statistical parameterization for the large variety of class types encountered.  Also, in an industrial 
setting it is often required that the classifier system begins to classify new data with few training examples while providing 
reasonable accuracy.  Bayesian classifiers [23] and neural networks [24] generally require large sample populations to 
estimate the appropriate statistics and are therefore difficult to implement in general for industrial applications.  This is 
primarily due to the diverse nature of the patterns that arise for different manufacturing processes and facilities, coupled with 
the length of time required collecting large sample populations.  Also, over the period of time required to collect large sample 
sets, acceptable process variations can occur that confuse the boundaries between classes.  The fuzzy k-NN classifier training 
set can readily be maintained over time (e.g., by including and excluding examples based on time and date), can be modified 
often, and can operate with relatively few examples for each class. 
 

(a) (b) (c) (d)(a) (b) (c) (d)
 

Figure 6 – Examples of spatial signatures isolated by the ORNL SSA technology.  In (a) a random population of 
defects, in (b) a systematic (non-random), non-clustered distribution, in (c) a complex scratch, and in (d) a spin 
coater streak pattern.  SSA classifies each of these distinct patterns even when they overlap on a single 
wafermap. 



 
3. Automated Image Retrieval 
The ability to manage large image databases has been a topic of growing research in many fields.  Imagery is being generated 
and maintained for a large variety of applications including remote sensing, architectural and engineering design, geographic 
information systems, and weather forecasting.  Content-based image retrieval (CBIR) is a technology that is being developed 
to address these needs [25].  CBIR refers to techniques used to index and retrieve images from databases based on their 
pictorial content.  Pictorial content is typically defined by a set of features extracted from an image that describe the color, 
texture and/or shape of the entire image or of specific image regions.  This feature description is used in CBIR to index a 
database through various means such as distance-based techniques, approximate nearest-neighbor searching, rule-based 
decision-making, and fuzzy inferencing [25, 26].  
 
CBIR addresses a problem created by the growing proliferation of automated defect review and ADC technologies; i.e., the 
management and reuse of the large amounts of image data collected during review.  For semiconductor yield management 
applications we have denoted CBIR technology as AIR [27, 28].  Digital imagery for failure analysis is generated between 
process steps from optical microscopy and laser scattering systems and from optical, confocal, SEM, AFM, and FIB imaging 
modalities.  This data is maintained in a DMS and used by fabrication engineers to diagnose and isolate manufacturing 
problems.  The semiconductor industry currently has no direct means of searching the DMS using image-based queries, even 
though many thousands of images are collected on a weekly basis [29].  Current abilities to query the fabrication process are 
based primarily on product ID, lot number, wafer ID, time/date, process layer, engineer classification, or ADC class, etc.  
Although this approach can be useful, it limits the user’s ability to quickly locate historical examples of visually similar 
imagery, especially for data that was placed in the database over one or two weeks prior.  Data much older than this is nearly 
irretrievable since retrieval is dependent on human memory and experience.  Without the addition of datamining capabilities 
such as AIR, this large image repository will remain virtually untapped as a resource for rapidly resolving manufacturing 
problems. 
 
For AIR to be practical and useful in the yield management 
environment, the image data must be associated with the 
process conditions that caused the defect image to be 
generated by the review tool.  The AIR system maintains 
this information in a relational database as shown in Fig. 7.  
The relational database manages standard wafermap 
information that is typically found in the wafermap file 
generated by the inspection tool such as defect data (e.g., X 
and Y coordinates, defect size, cluster number, etc.), wafer 
data ( e.g., Lot ID, wafer ID, Die pitch, etc.), and class data 
(e.g., engineer or ADC class labels for SEM inspection, 
optical inspection, cluster class, etc.).  The primary starting 
point for AIR-based searches is the image feature data that 
is maintained in the image feature tables.  These tables 
contain feature descriptions of the images (i.e., color, 
texture, shape, etc.) for the defect and substrate regions and 
file paths and names for the image directory that is 
maintained on the fab DMS side of the system.  Once a 
query has been completed, the ranked list of similar 
imagery that is returned can be further analyzed to 
determine any number of statistical distributions, e.g., tool 
commonality, die location, wafer location, engineering 
classification, etc. 
 
An example screen shot of the user-interface for the ORNL AIR system is shown in Fig. 8.  This retriever interface represents 
the basic GUI for retrieving images based on several different criteria including image content.  Images can be imported as 
query images using a cut-and-paste operation or file open browser dialog boxes.  Once an image is imported into the system, 
a mask is generated for the defect that provides a localization of the defect region.  Queries are performed by simply selecting 
the image areas of interest (e.g., defect texture, defect color, background color, etc), and optionally a set of layers or lots, 
which limits the query to images with these characteristics.  Returned images are displayed in ranked order in a gallery.  
Clicking each returned image shows its lot, layer, file name, classifications, etc. The returned gallery can be exported to an 
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Figure 7 – The fab DMS in (a) provides image and process 
data to the AIR system in (b) where it is maintained in a 
relational database. 



HTML file. In addition, Paretos are presented for the returned results that correlate the image list with processes.  These 
Paretos can be exported to comma-separated value files for use with other analysis tools. 
 

4. INTEGRATED ANALYSIS 
Integrated analysis of DMS data goes beyond database infrastructure and merging issues and will encompass new methods 
that attribute informational content to data, e.g., the assignment of defect class labels through ADC, or unique signature 
labels in the population of defects distributed across the wafer using SSA.  These methods put the defect occurrence into a 
context that can later be associated with a particular process, material characteristic, or even a corrective action.  For 
example, a defect coordinate in a wafermap file contains very little information, but a tungsten particle within a deposition 
signature is placed in the context of a specific manufacturing process and contamination source.  Later reporting of this 
information can lead to rapid yield learning, process isolation, and correction. 
 
Figure 9 shows the image-based technologies that have been surveyed in this paper and where they apply in the 
manufacturing environment that was described through Fig. 3.  To begin the discussion of integrated analysis, we will focus 
on merging SSA and ADC technologies as in Fig. 9a.  These technologies are being combined to facilitate intelligent 
wafermap defect sub-sampling for efficient off-line review and improved ADC classifier performance [30, 31, 32].  The 
integration of SSA with ADC technology can result in an approach that improves yield through manufacturing process 
characterization.  It is anticipated that SSA can improve the throughput of an ADC system by reducing the number of defects 
that must be automatically classified.  For example, the large number of defects that comprise a mechanical scratch signature 
that is completely characterized by SSA will not 
need to be further analyzed by an ADC system.  
Even if a detected signature cannot be completely 
characterized, intelligent signature-level defect 
sampling techniques can dramatically reduce the 
number of defects that need to be sent to an ADC 
system for subsequent manual or automated 
analysis (e.g., defect sourcing, tool isolation, 
etc.).  
 
The accuracy of an ADC system can potentially 
be improved by using the output of the SSA 
wafermap analysis to perform focused ADC.  
Focused ADC is a strategy by which the SSA 
results are used to reduce the number of possible 
classes that a subsequent ADC system would 
have to consider for a given signature.  SSA 
signature classification can be used to eliminate 
many categories of potential defects if the 
category of signature can be shown a-priori to 
consist of a limited number of defect types.  This 
pre-filtering of classes reduces the possible 
alternatives for the ADC system and, hence, 
improves the chance that the ADC system will 
select the correct classification.  It is anticipated 
that this will result in improved overall ADC 
performance and throughput. 
 
Integrating AIR with ADC will enable easier compilation of example libraries for ADC training purposes.  A common 
frustration with ADC systems is the work required to train them.  Using AIR should enable easier retrieval of relevant 
imagery to assemble appropriate sets for defining ADC classes.  In addition, AIR technology can help determine if an ADC 
system is operating within its original defined class range.  For example, subclasses can arise in a particular defect type that 
ADC cannot discern due to its static training.  Applying AIR to these defect images can help the operator determine if new 
subclasses of defect images are appearing, and if these subclasses are significant enough to warrant new training of the ADC.  
An automatic set of AIR queries could serve to validate ADC performance and monitor trends; for example, an AIR query 
that retrieved 100 images could show that 75 of them had the same ADC label.  A later query that showed only 50 of them 
had the same label could indicate changes in the process line. 

 

Figure 8 – Screen shot of the user interface for the ORNL AIR 
system showing the query (upper left) and returned list of similar 
images (lower right) and associated process statistics (lower right). 



 
Finally, the integration of SSA signatures and AIR (i.e., as in Fig. 9c) becomes a beneficial extension of the retrieval 
technology when we consider that the spatial signature is a collection of features.  These features are directly applicable in the 
AIR environment as a descriptive search and retrieval mechanism analogous to the features used to describe individual 
defects.  The storage of signature images (e.g., as simple binary bitmaps) will facilitate the viewing of retrieval data, but as 
with individual defect images, the greatest benefit is derived from the collection and analysis of associated process 
information.  These process statistics help the yield engineer to isolate and source problems to tools and equipment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 
Integrated yield management strategies will have to accommodate the ever-increasing volume of manufacturing data that is 
being sampled from the manufacturing process as the complexity trend continues to increase.  This increasing volume of data 
is necessitating the development of automation tools that can ultimately relieve the analysis burden placed on the yield 
engineer thus making him/her more efficient in the sourcing and correction of yield impacting events and trends.  While 
network bandwidth, database storage capacity, database retrieval rates, information transfer protocols, and other data 
standards must continue to evolve to meet these needs, automation technologies that take raw manufacturing data and convert 
it to useful information will provide the greatest advantage.  In this paper we have surveyed several technologies that have 
been developed by ORNL and ISMT that take human expertise and encapsulate it such that it can be applied to the decision-
making process in an automated fashion.  ADC and SSA take wafermap defect data and place it in the context of specific 
manufacturing events that impact yield.  Integrating these technologies can lead to in-line yield prediction that can assist in 
the rapid prioritization of these events.  AIR technology has the potential to provide an efficient query window into the 
historical record of the manufacturing environment, allowing search and retrieval capabilities currently unavailable to the 
semiconductor manufacturer.  The integration of AIR with SSA and ADC will facilitate the management, training, and 
accessibility of these various systems and data types as the yield engineer continues to deal with an ever-increasing mountain 
of manufacturing data while striving to meet ITRS productivity goals.  
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Figure 9 – The integration of these technologies in the yield management environment are 
resulting in the rapid isolation and correction of problems in complex semiconductor 
fabrication processes. 
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