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Abstract– In this paper, we develop a new method for
Wheeled Mobile Robot (WMR) fault detection. Specifically,
we develop kinematic and dynamic models of the WMR in
the presence of faults such as a change in the wheel radius
(e.g., deformation, broken spoke, flat tire) or general kine-
matic disturbances that model slipping or skidding faults.
Utilizing the WMR models, we employ a torque filtering
technique to develop a prediction error based fault detection
residual. The structure of the prediction error allows for
fault detection despite parametric uncertainty in the WMR
model.

I. Introduction

Wheeled mobile robots (WMRs) have been employed for
applications including: military operations, surveillance,
security, mining operations, planetary exploration, enter-
tainment, aids for mobility impaired humans, and materials
handling, transport, and inspection. As described above,
many WMR applications require interaction with humans,
handling of volatile materials, and/or operation in remote
and hazardous environments, such as found in space and
radioactive applications; hence, reliability and safety are of
paramount concern. Based on the importance of reliabil-
ity and safe operation of WMRs, several researchers have
recently investigated WMR reliability and fault tolerance.
To develop mobile robotic systems that are tolerant to

faults some researchers have proposed utilizing a multiple
mobile robot scheme (see [7], [8], and the references within).
Given the detection of a fault, the system degrades grace-
fully by reconfiguring the formation to compensate for the
failed WMR. In addition to mobile robot redundancy, re-
searchers have also investigated redundant sensing tech-
niques which allow a system to switch to “healthy” sensors
following a sensor failure (see [11], [12], and the references
within). Each of the above redundancy approaches can
only be exploited if the fault detection is effective: hence,
mobile robot fault detection has become an issue of signif-
icant interest.
In [8], Parker utilizes the concept of multiple mobile ro-

bots to develop a fault tolerant system. Specifically, each
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of the robots exploits the concept of motivational behav-
iors such as impatience and acquience to determine if a
fault has occurred in a cooperative partner. Based on the
detection of the fault, the remaining functional coopera-
tive partners can work to accommodate the robot failure.
Although the concept of motivational behavior as a fault
detection tool is beneficial from the viewpoint that a fault
can be detected by another robot, it lacks sensitivity, re-
sulting in a relatively slow response to the failure. That
is, the time to detect the fault is a function of the task
the robot is performing with respect to other robots in the
system.

Another approach that has been utilized to target fault
detection in mobile robots is the use of Kalman filters (see
[5], [9], [10], [15]). As described in [9], the overall phi-
losophy of the Kalman filtering method is to exploit ana-
lytical redundancy by thresholding the residual generated
by the difference between the measured values and values
predicted by the Kalman filter (based on certain assump-
tions regarding the system model). In [9], Romoumeliotis
et al. utilize a Kalman filtering technique to detect and
identify actuator faults such as flat tires and a periodic
bump in the wheel. In [10], the work in [9] is extended to
detect and identify faults in the left wheel, right wheel, and
heading angular velocity measurements; unfortunately, the
algorithm utilized in [9] and [10] to threshold the residuals
is not described. More recently, in [5] Goel et al. utilize a
similar Kalman filtering technique to detect the sensor and
actuator faults investigated in [9] and [10]. Once the fault
is detected, Goel et al. utilize a backpropogation Neural
Network structure to process the residual set to identify
the fault. In [15], Washington also utilizes a method that
is based on a combination of continuous and discrete state
estimation, Kalman filters and a Markov model represen-
tation to detect and identify actuator faults occurring in
the WMR (e.g., overcurrents in the wheel motors).

Based on the review of mobile robot fault detection lit-
erature given above, it is clear that none of the aforemen-
tioned research has incorporated the nonlinear dynamic
model of the mobile robot in the fault detection algorithm,
and hence, the effects of uncertainty in the mechanical pa-
rameters that are used to complete the dynamic model
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(e.g., payload mass, friction, etc.) have not been inves-
tigated. From a review of fault detection literature that
targets robot manipulators (see [2], [4], [13], [14], [17]),
it is clear that the key difficulty endemic to manipulator
fault detection (and hence, similar electromechanical sys-
tems such as WMRs) is that the normal (fault-free) dynam-
ics of the robot lead to inevitable deviations from the nom-
inal trajectory in fault-free operation, and the magnitude
of these deviations cannot be predicted (and therefore can
appear to be a fault unless properly masked by the thresh-
olds), when the dynamics are not explicitly considered in
the analysis. Clearly, fault detection will be most effective
when good dynamic models for the system are considered
in the fault detection tests (residuals) or the threshold se-
lection, or both.
In this paper, we build on the research presented in [2] to

develop a new method for WMR fault detection. Specif-
ically, we develop kinematic and dynamic models of the
WMR in the presence of actuator faults such as a change
in the wheel radius (e.g., deformation, broken spoke, flat
tire) or general kinematic disturbances that model slipping
or skidding faults. The approach is based on the gener-
ation of a residual and exploits the structure of the full
nonlinear dynamics of the WMR through a filtered torque
estimate that does not rely upon the measurement of ac-
celeration quantities (unlike many of the model-based fault
detection algorithms that are utilized to detect faults in ro-
bot manipulators). The fault detection residual is based on
a prediction error which is the difference between the fil-
tered torque signal and an estimate of the filtered torque.
The structure of the prediction error based fault detection
algorithm lends itself to take into account the inevitable
uncertainty in the robot parameters. A threshold is devel-
oped for the prediction error residual.
The paper is organized as follows. In Section 2 and 3, we

develop the kinematic and dynamic models of the WMR,
respectively. In Section 4, the torque filtering technique
is described. Section 5 describes how the filtered torque
signal can be utilized to generate the prediction error based
residual, and concluding remarks are presented in Section
6.

II. Kinematic Model

The kinematic model for a two-wheel1, differential-drive
WMR is assumed to have the following form

q̇ = S(q) (r + δ1(t− T1))
 ωR + ωL

2
ωR − ωL
D

+
 δ2(t− T2)

δ3(t− T2)
δ4(t− T2)


(1)

where q(t), q̇(t) ∈ R3 are defined as

q = [xc yc θ]T q̇ =
h
ẋc ẏc θ̇

iT
(2)

ẋc(t), ẏc(t), θ̇(t) ∈ R1 denote the time derivatives of
xc(t), yc(t), θ(t) ∈ R1 which represent the Cartesian po-
1Note that the expression “two-wheel mobile robot” refers to a mo-

bile robot with two active wheels and n-castor-like wheels (passive).

sition of the center of mass (COM) (which is assumed to
lie at the midpoint of the wheel axis for simplicity) of the
WMR along the X and Y -coordinate axis of the Carte-
sian plane and the orientation of the WMR (see Figure 1),
respectively, the matrix S(q) ∈ R3×2 is defined as follows

S(q) =

 cos θ 0
sin θ 0
0 1

 (3)

r ∈ R1 denotes the constant (pre-fault) radius of the
wheels, ωR(t),ωL(t) ∈ R1 represent the angular velocities
of the right and left wheels, respectively,D ∈ R1 represents
the length of the axis between the wheels, δ1(t− T1) ∈ R1
represents a fault that occurs at time T1 that physically rep-
resents a fault in the wheel radius (e.g., deformation, flat
tire, etc.), and δi(t− T2) ∈ R1 ∀i = 2, 3, 4, represent faults
that occur at time T2 that physically represent a fault due
to slipping or skidding conditions of the WMR. To simplify
the subsequent fault detection algorithm development, we
rewrite (1) as follows

q̇ = S(q)v + δ(t− T ) (4)

where v(t) ∈ R2 represents the (pre-fault) linear and an-
gular velocity of the WMR, denoted by v1(t), v2(t) ∈ R1,
respectively, and is defined as follows

v =

·
v1
v2

¸
= r

 ωR + ωL
2

ωR − ωL
D

 (5)

and δ(t− T ) ∈ R3 is defined as

δ(t− T ) ,

 δ̄1(t− T )
δ̄2(t− T )
δ̄3(t− T )

 =
 δ2(t− T2)

δ3(t− T2)
δ4(t− T2)

 (6)

+
δ1(t− T1)

2

 (ωR + ωL) cos θ
(ωR + ωL) sin θ
2 (ωR − ωL)

D


where T is a time instant defined as

T = min(T1, T2). (7)

The faults given in (6) are assumed to be first-order differ-
entiable and upper bounded as shown below¯̄

δ̄i(t− T )
¯̄ ≤ ∆i, ∀i = 1, 2, 3 (8)

where ∆i ∈ R1 are positive bounding constants. Further-
more, we note that

δ(t− T ) = 0, t < T (9)

and the standard kinematic model for the pure rolling and
nonslipping kinematic wheel is recovered.
Remark 1: The model given in (1) does not make a dis-

tinction between the left wheel radius and the right wheel
radius. Making a distinction between the left wheel and
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the right wheel radius may be easily incorporated into the
model for improved fault identification capabilities; how-
ever, since the focus of this paper is the detection of a fault
and since the overall structure of the fault detection algo-
rithm will not be altered, we do not make the distinction
for the sake of simplicity.
Remark 2: Note that the kinematic model for a WMR

subject to the so-called matched disturbance is defined as
follows [1]

q̇ = S(q)v + ρM(t)
£
cos θ sin θ 0

¤T
(10)

where ρM(t) ∈ R1 denotes a bounded disturbance. In ad-
dition, the kinematic model for a WMR subject to the so-
called unmatched disturbance is defined as follows [1]

q̇ = S(q)v + ρU (t)
£
sin θ − cos θ 0

¤T
(11)

where ρU (t) ∈ R1 denotes a bounded disturbance. Note
that it is clear from (4), (10), and (11) that the matched
disturbance and unmatched disturbance problems are both
special cases of the model used in (4).
Remark 3: With regard to the wheel radius fault de-

noted by δ1(t − T1), we assume the following inequality
is satisfied

r + δ1(t− T1) > 0. (12)

This is, catastrophic faults that result in a zero wheel ra-
dius (e.g., the loss of the entire wheel assembly) are not
considered.
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Fig. 1. Wheeled Mobile Robot

III. Dynamic Model

The dynamic model for a two-wheel, differentially driven
WMR can be written in the following form

STMSv̇ + STM δ̇ + STFd (Sv + δ) = STBτ (13)

where v̇(t) ∈ R2 denotes the time derivative of v(t) defined
in (5), S(q) was defined in (3), M ∈ R3×3 represents the
inertia matrix, Fd ∈ R3×3 represents a diagonal matrix of
friction coefficients, τ(t) ∈ R2 represents the torque input

vector, and B(q) ∈ R3×2 represents an input matrix that
governs torque transmission and is defined as follows

B =
1

(r + δ1(t− T1))

 cos θ cos θ
sin θ sin θ
D −D

 . (14)

To facilitate the development of the subsequent fault de-
tection algorithms, we multiply both sides of (13) by
r + δ1(t − T1), substitute (4) into (13) for v(t), and then
simplify the resulting expression as follows·

1 1
D −D

¸
τ = r

¡
M̄v̇ + F̄dv

¢
+ ζ(t− T ) (15)

where ζ(t− T ) ∈ R2 is defined as follows
ζ(t− T ) = δ1(t− T1)

¡
M̄v̇ + F̄dv

¢
(16)

+(r + δ1(t− T1))³
STM δ̇(t− T ) + STFdδ(t− T )

´
and

M̄ = STMS, F̄d = S
TFdS. (17)

Based on the following assumption

δ1(t− T1), δ(t− T ), and δ̇(t− T ) = 0 ∀t < T (18)

it is clear that

ζ(t− T ) = 0 ∀t < T. (19)

That is, in the absence of a fault the typical dynamic model
for the pure rolling and nonslipping two-wheel, differen-
tially driven WMR is recovered [3].
The dynamic equation given in (15), exhibits the follow-

ing property [6] which is utilized in conjunction with the
following assumptions in the subsequent fault detection al-
gorithm development.
Property 1: The dynamic model given in (15) can be lin-
early parameterized as follows

Y (q, v, v̇)θL = r
¡
M̄v̇ + F̄dv

¢
(20)

in the absence of faults (i.e., t < T ) where Y (·) ∈ Rn×p
denotes a known regression matrix and θL ∈ Rp contains
the unknown constant system parameters.
Assumption 1: Each of the constant system parameters de-
fined in (20) can be lower and upper bounded as indicated
by the following inequalities

θLj < θLj < θ̄Lj (21)

where θLj denotes the j -th component of the vector θL, and
θL, θ̄L ∈ Rp denote vectors of known, constant bounds for
the unknown parameters.
Assumption 2: A control is designed which ensures that in
the absence of a fault (i.e., t < T ) q(t), q̇(t), v(t), τ(t) ∈ L∞
and that lim

t→∞ q(t) = qd(t) where qd(t) ∈ Rn represents

the desired trajectory. Note that based on the form of the



4

dynamic model given in (15) and the expression given in
(14), if q(t), q̇(t), τ(t) ∈ L∞, it is clear that v̇(t) ∈ L∞.
Remark 4: One method for detecting faults in the WMR

could be to utilize (15) and (20) to isolate the fault terms
as shown below

ζ(t− T ) =
·
1 1
D −D

¸
τ − Y (q, v, v̇)θL. (22)

Unfortunately, due to the fact that (22) would require exact
model knowledge of the system and acceleration measure-
ments, it is clear that (22) is impractical for fault detection
purposes; hence, we are motivated to craft a fault detec-
tion algorithm that is independent of acceleration measure-
ments and exact knowledge of the system parameters.

IV. Torque Filtering

Motivated by the desire to eliminate acceleration mea-
surements from the subsequent fault detection algorithm,
we define a filtered torque signal denoted by τf (t) ∈ R2 as
follows [6]

τf = f ∗
·
1 1
D −D

¸
τ (23)

where ∗ denotes the standard convolution operation, τ(t)
was defined in (13), the filter function, denoted by f(t) ∈
R1, is given by

f = α exp(−βt) (24)

and α,β ∈ R1 denote positive filter constants. By substi-
tuting the left-side of (15) into (23) for τ(t) and utilizing
standard convolution properties (see the Appendix), we can
rewrite (23) in terms of the following linear parameteriza-
tion

τf = YfθL + ζf (25)

where θL denotes the same unknown, constant parameter
vector defined in (20), Yf (q, v) ∈ R2×p denotes the mea-
surable, filtered regression matrix which is independent of
acceleration measurements and is explicitly given by

YfθL = ḟ(t) ∗ ©rM̄(q(t))v(t)ª+ rf(0)M̄(q(t))v(t)
−rf(t)M̄(q(0))v(0)
+f(t) ∗

n
−r
³ .

M̄(q(t))v(t)− F̄d(q(t)v(t)
´o
(26)

and ζf (t−T ) ∈ R2 denotes a filtered fault signal that is also
independent of acceleration measurements and is defined as
follows

ζf (t) = f(t) ∗ ζ(t− T ). (27)

The structure of (25) is utilized in the subsequent analysis;
however, since θL is a vector of uncertain parameters, the
form of the filtered torque signal given by (25) is not im-
plementable. An equivalent, implementable (i.e., a measur-
able, acceleration independent) form of the filtered torque
signal can be determined by utilizing (23) and (24) along
with standard Laplace Transform properties to generate
the following differential equality

τ̇f = −βτf + α

·
1 1
D −D

¸
τ τf (0) = 0 (28)

where α,β were defined in (24).
Remark 5: Due to the structure of the above torque fil-

tering technique, the filtered version of the fault is delayed.
To mitigate the delay, β is made increasingly large. Based
on (25), it also is clear that the fault can be isolated in
terms of an expression that is independent of link accelera-
tion measurements. Thus, we are now motivated to design
an algorithm based on (25) that can detect faults in a WMR
despite the presence of parametric uncertainty.

V. Prediction Error Based Fault Detection

The objective of this paper is to design an algorithm
that can detect faults in mobile robots despite uncertainty
in the mechanical parameters. To this end, we define a
measurable prediction error signal, denoted by ε(t) ∈ R2,
as follows

ε = τf − τ̂f (29)

where τf was defined in (28), and τ̂f ∈ R2 is a subse-
quently designed filtered torque estimate. This method of
residual generation is similar to one of the fault detection
tests proposed in [14] for robot manipulators; however, in
[14] acceleration estimates were required for implementa-
tion.
Due to the presence of parametric uncertainty in (13),

the filtered torque estimate given in (29) is designed as
follows

τ̂f = Yf θ̂L (30)

where θ̂L ∈ Rp is a constant, best-guess parameter esti-
mate2 for θL defined in (20) and Yf (q, q̇) was defined in
(25). From the design of τ̂f (t), we can use (25), (29), and
(30) to obtain a new expression for ε(t) given as follows

ε = Yf θ̃L + ζf (31)

where θ̃ ∈ Rp quantifies the constant mismatch between the
actual uncertain parameters and the constant, best guess
parameter estimate as shown below

θ̃L = θL − θ̂L. (32)

Based onAssumption 1, we can upper bound the prediction
error signal given in (31) as follows

|εi| ≤ ρi(t) +
¯̄
ζfi
¯̄

(33)

where ρ(t) ∈ R2 is a positive bounding signal selected to
satisfy the following inequality¯̄̄³

Yf θ̃L
´
i

¯̄̄
≤ ρi(t) (34)

and (·)i represents the i-th element of a vector. Based on
the structure of (33), we define a fault indicating, dead-zone
residual function, denoted by D1[·] ∈ R1, as follows

D1[εi] =

½ |εi| if |εi| > ρi(t)
0 if |εi| ≤ ρi(t)

(35)

2The term best-guess-estimate is utilized to signify a constant para-
meter estimate that is defined by the user as a best-guess of the actual
value of the unknown parameter. Specifically, the user may obtain
a value for the best-guess estimate utilizing any of the appropriate
parameter identification techniques that are found in literature.
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to determine if a fault occurs. That is, if

D1[εi] > 0 (36)

then a fault is present in the system; however, if the pa-
rameter uncertainty in the system is relatively large, then
some faults may not be detected due to the inability of
the fault detection scheme given in (35) to distinguish the
faults from the parameter uncertainty.
Remark 6: The motivation for selecting (35) as shown

below
D1[εi] = |εi| if |εi| > ρi(t)

versus some positive constant (i.e., D1[εi] = 1 if |εi| >
ρi(t)), arises from the additional flexibility gained with re-
gard to observing the extent that the residual given in (35)
was violated. That is, by utilizing (35), possible false alarm
conditions that may occur (e.g., due to signal noise, nu-
meric round-off, etc.) may be avoided.
Remark 7: If exact model knowledge of the system is

available, then we can simply redesign τ̂f (t) as follows

τ̂f = YfθL (37)

where θL defined in (20) is now assumed to be known.
After substituting (25) and (37) into (29), we obtain the
following expression for ε(t)

ε = ζf ; (38)

hence, at least, in the theory, ε(t) = 0 for t < T . It should
be noted that in practice small uncertainties and measure-
ment noise will no doubt ensure that ε(t) 6= 0 for t < T
(i.e., kεi(t)k will equal some unknown time-varying func-
tion); hence, we define a fault indicating, dead-zone resid-
ual function, denoted by D2[·] ∈ R1, as follows

D2[εi] =

½ |εi| if |εi| > (µo)i
0 if |εi| ≤ (µo)i

(39)

such that, if a fault is present in the system

D2[εi] > 0 (40)

where µo ∈ R2 is a vector of positive, scalar design con-
stants that are experimentally determined to account for
small uncertainties and measurement noise.

VI. Conclusion

In conclusion, this paper provides kinematic and dy-
namic models of a mobile robot system that is subject to
faults such as a change in the wheel radius (due to defor-
mations, flat tires, broken spokes, etc.) and general kine-
matic disturbances that could physically represent slipping
and skidding effects. A prediction error based fault detec-
tion algorithm is presented that can be utilized to detect
the aforementioned faults despite parametric uncertainty
in the dynamic model. In subsequent work, we will 1) fur-
ther characterize the mobile robot faults in an attempt to
develop a fault identification scheme, 2) investigate gen-
eralizing the fault to incorporate a broader class of mo-
bile vehicles, 3) leverage off of our recent results with fault

detection in robot manipulators [2] to develop algorithms
that provide increased sensitivity (faster fault detection ca-
pabilities) by further mitigating the effects of parametric
uncertainty in the system model, and 4) develop an ex-
perimental testbed to demonstrate the effectiveness of the
fault detection algorithm in the presence of parametric un-
certainty.
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Appendix

In order to rewrite (23) in terms of the linear parameter-
ization given in (25), we first note that (13) can be written
in the following form [6]·

1 1
D −D

¸
τ = ḣ+ g (41)

where

ḣ =
d

dt
(rM̄(q(t))v(t)) (42)

and

g = −r
³ .

M̄(q(t))v(t)− F̄d(q(t)v(t)
´
+ ζ(t− T ). (43)

After substituting (41) into (23), we obtain the following
expression

τf = ḟ(t) ∗ ©rM̄(q(t))v(t)ª (44)

+rf(0)M̄(q(t))v(t)− rf(t)M̄(q(0))v(0)
+f(t) ∗

n
−r
³ .

M̄(q(t))v(t)− F̄d(q(t)v(t)
´

+ζ(t− T )}
where the facts that

f ∗
n
ḣ+ g

o
= f ∗ ḣ+ f ∗ g (45)

and
f ∗ ḣ = ḟ ∗ h+ f(0)h− fh(0) (46)

have been utilized. Hence, based on (44), it is straightfor-
ward to conclude that (23) can be rewritten in the structure
given in (25).


