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Abstract. 
Three He atoms can react in vapor at temperatures of the order of a few degrees Kelvin to form a dimer and a free 
atom by three-body collisions. Conversely, the dimer may fragment by collisions with free He atoms. Cross sections 
and reaction rates for these processes have been computed at milliKelvin temperatures using the hyperspherical hidden 
crossing theory. At higher energies, of the order of 0.1 to 5 Kelvin, the impulse approximation has been used to estimate 
these processes. The computed fragmentation cross section is reported. 

INTRODUCTION 

In the theory of Bose condensates the two-body scat- 
tering length a is a fundamental parameter. If it is pos- 
itive stable, homogeneous condensates can form, but if 
it is negative they cannot. If a is positive and large, then 
the bosons usually form a weakly bound dimer with bind- 
ing energy EO = l/(2/~‘), where p is the reduced mass 
and atomic units are used. The lifetime of the condensate 
may be set by the rate for dimer formation. One process 
that leads to dimer formation is the three-body reaction 
B+B+B-+B+B;?. 

The rate for this process may be computed from the 
cross section for the inverse process B + B2 + B + B + B 
and detailed balance. A prototype for this process is 
the fragmentation of the He dimer whose binding en- 
ergy is 1.3 milliKelvin. The threshold region is impor- 
tant for temperatures in the millikelvin range. In this 
range the quantum theory of the full three-body system 
is needed for accurate calculations of the fragmentation 
S-matrix. Three different treatments have been given in 
the literature( 1, 2, 3). The hidden crdssing theory of 
Ref. (1) gives an essentially closed form analytic result 
and is briefly reviewed in the next section. 

At energies much higher than the dimer binding en- 
ergy, the hidden crossing theory is no longer applicable 
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and a high energy theory is needed. The Born approxi- 
mation is the most widely known high-energy theory, but 
it requires that the collision energy be much greater than 
the interatomic potential. Since the He-He potential has 
a hard repulsive core, the Born approximation requires 
collision energies in the keV energy range, well outside 
of Kelvin range of interest for atomic beams. In this lat- 
ter range the impulse approximation can be used since it 
does not require a weak interatomic potential. Rather, it 
is valid if the dimer binding is much less than the col- 
lision energy and the dimensions of the dimer are much 
larger than the range of the atom-atom interaction. These 
conditions are satisfied when the scattering length is large 
compared with the dimensions of the atoms. On that ba- 
sis impulse approximation calculations for He-He2 colli- 
sions are employed in the 1 - 10 Kelvin energy range. 

HIDDEN CROSSING THEORY 

The hyperspherical close-coupling approximation(4) 
maps the full three-body problem onto two-body-like 
Schr6dinger equations. Near the threshold for the frag- 
mentation process, an analytic representation of the 
cross section has been found using the hidden crossing 
theory( 1). The hidden crossing theory gives 

o(E) = $ exp[-S(E)] sin2A(E) (1) 



where S(E) and A(E) are the real and imaginary part of a 
WKB-like phase integral 

A(E) + is(E)/2 = LT K(R)dR. (2) 

In the above equation, R is the hyper-radius, K(R) is the 
local wave vector in the hyperspherical adiabatic repre- 
sentation, and the integral is taken along a contour in the 
complex plane connecting the zero of K(R) in the dimer 
channel at RI with the zero in the fragmentation chan- 
nel at R2. This theory gives a fragmentation cross section 
proportional to a4 times an oscillatory factor sin2 A(E). 

‘, 

The oscillatory factor plays an important role in setting 
the magnitude of the threshold cross section, but we may 
take it to be a constant for sufficiently small E. The re- 
maining factors are proportional to the E2 Wigner thresh- 
old factor and an a4 scale factor. We find 

o(E) = 
47q2 
FAE2a4 sin2(so ln(a/Ro) + Ao> (3) 

where A = 0.167, SO = 1.006, and Ro and A0 are con- 
stants. 

The a4 factor is not immediately obvious; rather an a2 
dependence is expected on the basis of an impulse ap- 
proximation argument. In this approximation the cross 
section for dimer breakup is just double the cross section 
for elastic scattering of two He atoms, equal to 49~2~ at 
low energies. To reconcile these two different powers of 
a, note that it is the cross section averaged over an energy 
of the order of the binding energy Eo of the dimer that 
should have an intuitive dependence upon a. One finds 
that E2a4 averages to l/E0 0~ a2; thus the expected a2 
dependence is recovered. 

IMPULSE APPROXIMATION 

Of course, we note that the impulse approximation 
is only qualitatively correct in the threshold region, and 
one must rely upon more advanced three-body theories 
for quantitative results. At higher energies, for exam- 
ple, the l-5 Kelvin range of interest for gases undergoing 
expansion(6), the impulse approximation is actually well 
justified. Because an energy of 1 Kelvin is 10,000 times 
larger than the dimer binding, this binding may be ne- 
glected in collisions with other He atoms. Also, the dimer 
is about 10 times larger than the nominal range of the He- 
He potential, so for atom wavelengths much less than the 
size of the dimer, one can consider that collisions with the 
dimer are effectively collisions with individual He atoms. 
If a collision takes place, the dimer breaks up with almost 
unit probability. In this case the impulse approximation 
cross section for breakup is just twice the He-He elastic 
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FIGURE 1. Cross section for the process He + He2 -+ He + 
He + He in the impulse approximation. The horizontal line cor- 
responds to the limit cross section for the hard core of the He-He 
potential with r-0 = 4.5~~. 

scattering cross section at the same relative velocity. That 
is, 

cbreakup (E) = 2~22~ (E). (4) 

We have computed 2&.~(E) by numerical solution of 
the Schrcdinger equation for He-He scattering. We use 
a Morse potential chosen to fit the depth D, the radius 
t-tin of the potential minimum, and the s-wave scattering 
length a from the standard LM2M2 potential of Aziz et 
al. The fit is very good over most of the range; however, 
the potential core is somewhat softer than for the Aziz 
potential. We find, for example, that the classical turning 
point for energies of 1 Kelvin is about 0.1 au smaller for 
the Morse potential than for the Aziz potential. This may 
affect cross sections by amounts of the order of 5%. 

The Schrbdinger equation was solved for the elastic 
scattering phase shifts in a partial wave expansion. Phase 
shifts for e = 0, 1, 2 and 3 were computed for energies 
between 0.05 and 5 Kelvin. The first three partial waves 
gave significant contributions, while the f! = 3 contribu- 
tion was negligible but was included for completeness. 
The computed breakup cross section is shown in Fig. 1. 

Three features are apparent in Fig. 1. First there is the 
rapid rise toward low energies. This rise is mainly due 
to the s-wave component since it approaches 8na2 with 
a M 187au. A shoulder in the intermediate energy region 
near l-2 Kelvin is a second noticeable feature. This is due 
to a top-of-barrier p-wave resonance. For this resonance, 
the phase shift increases to n/4, then begins to decrease 
with increasing energy giving the slight bump seen in the 
figure. A third feature is the flat region above 3 K. In this 
region the two-body elastic cross section has the same or- 
der of magnitude as m-i where r-0 is the distance at which 
the depth of the potential equals the incident energy. One 
expects that the cross section will decrease slowly from 



.: , 

this value to ?‘c?r at high energies, where rr is the range 
of the hard inner core. In the present case this range is 
equal to rT = 4.5au. 

The cross section shown in Fig. 1 complements the 
low-energy hyperspherical and effective field theory cal- 
culations applicable at threshold. At the lowest energy 
(E = 0.05K) in the figure, the wavelength of Schrijdinger 
wave for the He atom is of the order of the dimensions 
of the dimer and the impulse approximation ceases to 
be quantitatively accurate. Improved estimates could be 
obtained by adapting the impulse approximation ampli- 
tude given in the book by Mott and Massey(7) to the 
case of three identical particles. IJsing that amplitude 
would“account for features, such as coherent scattering 

“’ from the atoms in the dimer and energy shifts owing to the 
dimer binding, neglected in the simple expression Eq. (4). 
These corrections would be needed to connect with the 
threshold cross section. Even without these corrections, 
the cross section at 1.3 x 10V3 K from the hidden crossing 
theory neglecting the oscillatory factor is of the order of 
lo4 au, in modest agreement with the value of CT = 24 au 
at E = 50 x 1O-3 K from the impulse approximation. 

SUMMARY 

We have computed the cross section for He + He:! -+ 
He + He + He in the impulse approximation applicable 
in the 1 - 5 Kelvin energy range. Prominent features of 
the cross section are interpreted in terms of the expected 
behavior of the C = 0 and 1 partial waves. 
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