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Introduction 

High harmonic ion cyclotron resonances are important for understanding 
ICRF experiments on: 

- NSTX: RF heating with high harmonic fast waves 
- TFTR and PBX-M: RF flow drive with high harmonic IBW 

A realistic theoretic treatment of these cases requires full-wave models 
that go beyond the usual second order finite Larmor radius expansion 
used in most ICRF wave analysis codes. Possibilities include: 

- Non-local (integral) codes: 
Valid to all orders in klp and p/L 
require long computing times 

- Local conductivity (lowest order in p/L): 

This assume p/L << 1 but still retain all orders in kLp 

Paper NSTX (7i’= 5 keV): p/L = 0.0825, 
TFTR (Ti= 4 keV): p /L = 0.0037, 

klp = 10 
kLp= 6 

requires less computing time than integral codes 
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Spectral solution to the wave equation 
-:.*w a .“.,, ,“. L 

We apply a spectral method to solve the vector wave equation: 

The electric field and plasma current can be expanded in Fourier harmonics as: 

&.) = c Ek,, &:I: 
k, 

J,(x) = c q2, k,) 1 &(p) iikib2 
k 1L 

where kn = 2 w/d and& XC d. We assume the well-known (Stix) 
expressron for the “local” plasma conductivity (lowest order in p/f). 
However, a first order correction in p/L could be included by retaining terms 
in o(x, k) that are proportional to gradients in the equilibrium quantities. 

Local plasma conductivity (p/L << 1) 
-..>I.I-yl<.r 2,. l,r,.-i 

To lowest order in p/L, the conductivity for an isotropic Maxwellian is (Stix): 

where 

I, is the modified Bessel function with argument l-j, : 11 = IL(~) 

5, is the argument of the plasma dispersion function: Zr = Z(,$) 
2 

ml) =- 211 + CLZ(C)l 
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Compare spectral and second-order finite 
difference solutions for two-ion-hybrid case 

*I_i./>>j ,.e .,” ., 
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Compare the driven flow for two-ion-hybrid case 
.l_,l-l.,~lll,__.~-_^l~. ^ 
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High harmonic fast waves in NSTX: 77= 1 keV 
maw.:..: .., .._. 
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High harmonic fast waves in NSTX: Ti’= 5 keV ‘nnl -wj**.n..lY_(-.x”a.~,I i ,ij,. 
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High harmonic IBW launch in TFTR i(,,.>3i*&“l. ,w*. ,. r., 
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Summary I_* .., , 
We have applied a spectral method to solve the 1-D wave equation: 

- Avoids the second order gyroradius expansion 
- Requires less computing time than a full integral code 

We use the well-known “local” plasma conductivity (p/f << 1) 
- a first order correction in p/L could be included by retaining terms 

in o that are proportional to gradients in equilibrium quantities 

Results: 
- Spectral method and finite difference solutions agree when w/q 2 2 

- NSTX: the agreement with second order solution is good for 61 1 keV; 
some differences are seen for T= 5 keV. 

- TFTR: directly launched 4th harmonic IBW is absorbed at the fifth 
harmonic of tritium for k, small (cut-off for k, large) 

- Run times: vary between 2 and 100 minutes depending on how 
many Fourier modes and ion harmonics are required 

Sign up for copies of poster 
.-.._I” I.jl~. 


