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Introduction to Nanoscience
• Nanoscience is an emerging area of science that concerns

itself with the study of materials and systems having very
small size.
–The prefix “nano” is derived from the Greek for “dwarf”. In the

SI system, it refers to 10-9.
–Nanoscience definitions:

• The study of materials, systems, and devices of size range of the
order 1nm to 100nm.

• The ability to observe, measure, predict, and construct on the
nanometer scale and exploit the novel properties found at that
scale.

• It is interdisciplinary science incorporating chemistry,
biology, and physics.
–Example: Hybrid organic and inorganic materials.
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“There’s Plenty of Room at the Bottom”:
An Invitation to Enter a New Field of Physics

• Classic talk given by Richard Feynman, December 29, 1959.
–http://www.zyvex.com/nanotech/feynman.html

–“Why cannot we write the entire 24 volumes of the
Encyclopedia Britannica on the head of a pin?”

–“I want to build a billion tiny factories, models of each other,
which are manufacturing simultaneously.”

• See “Feynman Prize” Winners:
http://www.foresight.org/FI/2003Feynman.html.
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“Small is different”
Within the nanoscale, the size scaling of well-known phenomena
in bulky materials is no longer valid.

• Materials synthesis and assembly “from the bottom up”.
–  Self assembly

• Size-dependent phenomena
–  Capacitive charging

• Coulomb blockade of current
–  Quantum size effect

• Size-dependent control of electronic structure

• Access to quantum phenomena not observed in larger structures.
– The “realm of the dwarfs” leads to the “Quantum World”.

• Complexities such as these promise materials and systems
that may exhibit classes of behavior fundamentally different
from those of both molecular and micro-scale structures.

• National Nanotechnology Initiative: www.nano.gov
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• Construction of Linear Arrays of nanoscale metal
clusters via DNA templates.

4
nm

Example #1: Materials Synthesis via DNA Templates
DNA and Gold Nanoparticle complexes

Au38(S(CH2)11COOH)24

C
O N

H

Au
S P

“Covalent Attachment of Gold Nanoparticles to DNA Templates”
Stevenson, Muralidharan, Maya, Wells, Barhen, and Thundat, J. Nanosci. Nanotech. 2 (2002)
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• DNA CUBE • DNA TRUNCATED
OCTAHEDRON

http://seemanlab4.chem.nyu.edu/homepage.html

Seeman’s DNA Constructs
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2D Lattices from DNA Cross-linked Structures
• Seeman and coworkers have produced DNA in regular 2D geometries

• N.C. Seeman, J. Vac. Sci. Technol A 12, 1895 (1993);
• E. Winfree, et al., Nature 394, 539 (1998).

300 nm
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Example #2: Capacitive nature of nanoscale
metal clusters
• Isolated conducting sphere

• (Coulomb) Energy to charge sphere with
single electron

• Find energy to add single electron to
ideal conducting sphere with R=5 nm:
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“Single-electron” Devices and “Coulomb Blockade”

Basic Assumptions
• Electron tunneling on and off conducting island,

–  RT >> h/e2 ≈ 25.8 kΩ.
• Overcome thermal fluctuations,

–  EC = e2/C >> kBT ≈ 0.026 eV.
• Tunneling rates from Fermi’s Golden Rule

+V

R2

C2

R1

C1

Tunneling
Junctions

References:

Likharev and coworkers (1991) 
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Energy levels of electrons in the metal cluster
• According to quantum mechanics,

electrons have extra energy from
being localized in the cluster, i.e., a
“box”.

• Energy to add an electron is a
difference in chemical potential, e.g.,
of the neutral cluster and its anion.

• Capacitance concept can be
extended to atomic-sized structures.
–C=C(Nelectrons)

• Capacitive properties may be
measured or computed from
Quantum Mechanics.
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Charging Characteristics of Au38 from Density Functional Theory

• Using a result from DFT, the
difference in IP and EA may be
written the sum of a term
depending of the size of the
charge density and the HOMO-
LUMO gap.

• Predictions from numerical
calculations:

– Truncated octahedron.
– Charge –2 is the lowest energy

configuration.
– Capacitance is constant over

several charge states.
–  Electronic shell closings result in

particularly configurations  large
charging energies.

Apra, Krstic, Wells, et al., Comp. Mat. Sci. (2003)
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Polymer-based optoelectronics

Huge literature on macro/meso-
scale  polymer-based optoelectronic
(LEDs, photo-voltaics, etc.)
devices.
     - R. H. Friend, et al. Nature 

347, 539 (1990).

Applications:
- Electronic paper, luminescent
clothing, display technologies, etc.!

“…brighter, thinner,
lighter, faster” What are the issues in

nanoscale applications??
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Semiconducting Polymers ??

• Many different ‘flavors’
• Cheap to produce (many are
commercially available)
• Convenient solution-phase
processing
• Facile electron transport
properties
• Responsive to optical excitation
• Size-scalability down to 1 nm

hωin

hωout ∝ 1/L2L
 Electroluminescence

L
hωout(+)(-)

Vbias

+

-
LUMO

HOMO

No need for external
light pump.
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Semiconducting Polymers:
Photo-physical Limitations in thin-film formats
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The bad news:
• Random, disordered chain structure for thin films;
• Broad emission spectrum, poor photo-stability and charge-transport properties
 nanoscale photonics applications are “short-circuited”!
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Semiconducting Polymers: Probing single-molecule chain organization
and orientation in thin films

• Emission dipoles oriented in the
plane of the substrate.
• Surface interaction/charge states
• Oxidation events

Random coil

Defect-rod

Fluorescence of single MEH-PPV molecules
under 400x magnification
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Example #3: Oriented nanostructures from single-molecules
of conjugated polymers P. Kumar, et al., JPCB 107, 6252 (2003)

•Microdroplet-based (ink-jet)
production
• Amenable to wide range of
polymers
• Transition moments oriented
perpendicular to substrate
• Single dipole pattern suggests
high-degree of intra-molecular
order
• Profoundly modified photo-
physical properties
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1 µm

T-H. Lee, P. Kumar, A. Mehta, R. M. Dickson, 
and M. D. Barnes, submitted to Phys. Rev. Lett.

θ = 1°
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Stable emission for hours!

Enhanced photo-physical properties of oriented polymer
nanoparticles (cyano-substituted PPV)
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Generating an Electromagnetic Wave
• Maxwell’s Equations predict the generation and free

propagation of EM radiation.

Physics, Halliday, Resnick, and Krane 5th Ed., Section 38-4
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Radiation emission from oscillating dipole

• Far-field
–Propagation to large distance:

Radiated energy
–Transverse field only
–Distance dependence: 1/r
–Angular dependence: sinθ

• Near field
–Instantaneous dipole field
–Distance dependence: 1/r3

–Additional longitudinal
component.

• Induction field (Intermediate)
–Distance dependence: 1/r2
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Molecular Dynamics Simulation of Polymer:
Initial Stages of Folding
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Connection between orientation and particle structure?
 MM simulations of polymer folding & collapse

• Proceeds initially through
solvent-solute interactions
– “Good solvent”  No

folding
– “Bad solvent”  Rapid

folding

• 3D confinement in droplet
– High-pressure

environment from
surface tension

1
P

R
!
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Distribution of Polarization Anisotropy Parameters:
Comparison with thin-film results
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D. Hu, et al.,  Nature 405,1030 (2000).
A. Mehta, et al. Nanoletters  3 (5), 603-607 (2003).

Z-oriented nanoparticles:rod

Defect rod

Coil

Thin film
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Discrete center frequency distribution
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Emission frequencies correlated with discrete confinement (box) lengths
- but not strongly correlated with molecular weight (size)!

Observations:
•Frequency is fixed, (but different
for each particle).
•Frequency correlated not with rod
height but with conjugated
oligomer length.
• Absolute frequencies red shifted
(Possibly due to local LUMO
lowering due to structural order).

P. Kumar, et al., JPCB 107, 6252
(2003)
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Observed center frequencies vs. exciton model
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Nanoscale Antennae: Are the dipoles coupled?

A. Wide-field view of
oriented PPV
nanostructures.

B. Close up of particle
“dimer” with 290 nm
spacing

C. Summed emission
spectrum for the
dimer (D1+D2).

D. Dipole D1is the
“probe” particle in
the presence of the
second dipole D2
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Fluorescence decay

A. Fluorescence decay functions
compared with a typical isolated
particle transient (γ0=0.11 nsec-1).

B. D1 fluorescence decay function
in presence of D2, and after
photo-bleaching of D2.

(A.) (B.)
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Radiation emission from oscillating dipole
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Barnes, Krstic, Kumar, Mehta, and Wells, Phys. Rev. Lett. Submitted (2004)
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Far-field fluorescence decay rate modulation

• For two coupled
oscillators, the
external driving force
has an oscillatory
dependence on the
distance between the
dipoles.
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Photon statistics from single polymer nanostructures:
Single or multiple emissive sites ?
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Photon correlation statistics from single polymer
molecules in thin-films

C. W. Hollars, S. M. Lane, and T. Huser,
Chem. Phys. Lett. 370, 393 ( 2003).

•Summed
contribution from
over ≈ 1000
molecules

•Relatively poor
contrast (≈ 35% )
-  suggests <N>≈ 3

• Short-lifetimes?
- averaging over
configurations?

R6G Reference

MEH-PPV
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Intensity correlation function from a single z-oriented CN-PPV
nanostructure

g2(0) = 0.08 ± 0.02

•Definitive evidence of
single-site emission!

g2(t) = 1 - (1/N)exp[-| t *(Wp + Γ)|]

T-H. Lee, P. Kumar, A. Mehta, R. M. Dickson, 
and M. D. Barnes, submitted to Phys. Rev. Lett.
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Discrete center frequency distribution

8
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Emission frequencies correlated with discrete confinement (box) lengths
- but not strongly correlated with molecular weight (size)!

Observations:
•Frequency is fixed, (but different
for each particle).
•Frequency correlated not with rod
height but with conjugated
oligomer length.
• Absolute frequencies red shifted
(Possibly due to local LUMO
lowering due to structural order).

P. Kumar, et al., JPCB 107, 6252 (2003)
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Individual PV Oligimers: Lowest Singlet Excitation
Compare experiment with model and semi-empirical predictions
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 Exp: Schenk, Adv. Mat. 3, 492 (1991)
 Exp: Woo, Syn. Met.  59, 13 (1993), Fig. 4
 Exp: Woo, Syn. Met.  59, 13 (1993), Fig. 7 (solid)
 Exp: Woo, Syn. Met.  59, 13 (1993), Fig. 7 (solution)
 Exciton Model, Yu, Syn. Met.  66, 143 (1994)
 Sumpter's INDO/S (48 + 48)
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Excitation of PV Oligimers:
Comparison of Exciton Model, INDO/S, TDHF & TDDFT
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First Singlet Excitation Length Dependence • TDHF:
– Known to over predict

excitations
• TDDFT (LDA):

– “Method of choice” for large
molecules.

– OK for smallest oligimers
– Errors grow with system size.

• Coupled-clusters linear
response (EOM-CCSD) is too
expensive.

• Exact exchange required for
excitations in π -conjugated
systems
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