
High End Computing Component Technology

A Response to the HECRTF Call for White Papers
May 2003

Rob Armstrong David E. Bernholdt
Distributed Systems Research Computer Science and Math Division
Sandia National Laboratory Oak Ridge National Laboratory
7011 East Avenue P. O. Box 2008, MS 6367
Livermore, CA 94551 Oak Ridge, TN 37831-6367
(925) 294–2470 (865) 574–3147
rob@ca.sandia.gov bernholdtde@ornl.gov

Tamara Dahlgren Wael R. Elwasif
Center for Applied Scientific Computing Computer Science and Math Division
Lawrence Livermore National Laboratory Oak Ridge National Laboratory
P. O. Box 808, L–365 P. O. Box 2008, MS 6367
Livermore, CA 94551 Oak Ridge, TN 37831-6367
(925) 423–2685 (865) 241-0002
dahlgren1@llnl.gov elwasifwr@ornl.gov

Gary Kumfert Lois Curfman McInnes
Center for Applied Scientific Computing Math and Computer Science Division
Lawrence Livermore National Laboratory Argonne National Laboratory
P. O. Box 808, L–365 9700 South Cass Avenue
Livermore, CA 94551 Argonne, IL 60439–4844
(925) 424–2580 (630) 252–5170
kumfert@llnl.gov mcinnes@mcs.anl.gov

Jarek Nieplocha Boyana Norris
Computational Sciences & Mathematics Math and Computer Science Division
Pacific Northwest National Laboratory Argonne National Laboratory
Battelle Blvd, MSIN: K1-85 9700 South Cass Avenue
Richland, WA 99352 Argonne, IL 60439-4844
(509) 372–4469 (630) 252–7908
jarek.nieplocha@pnl.gov norris@mcs.anl.gov



Abstract

Component technology promises to reduce “time to solution” for end-users of High End
Computing (HEC) systems by reducing their software burden. Components also make the
next level of software complexity tractable, improving software reuse, vertical integration,
specialization, and ultimately return on investment. While these capabilities have already been
demonstrated in the commercial software industry, they have been slower to affect the special-
ized segment of HEC systems because of unique performance constraints, massive parallelism,
and widely varying — often one of a kind — architectures. We thus propose new directions of
research to address outstanding issues in HEC components and their use in large-scale scien-
tific simulations.

1 Motivation for Components in HEC

In the commercial software industry, the increasing complexity of contemporary software devel-
opment has demanded a new mechanism that scales across people, geography, and time to achieve
economics of scale. Component technology is the solution to that demand. It is component tech-
nology that enables MS WordTM documents to appear in MS PowerpointTM slides and has led to
the point-and-click graphical user interfaces that inhabit most desktops today.

High End Computing (HEC) software is also continuously increasing in complexity and in
need of technology that scales across people, geography, and time, but HEC cannot effectively use
component technologies provided by the commercial sector. HEC demands for performance and
massive parallelism simply exceed the scope of the commercial market. Similar to data storage,
networking, and visualization, component technology is a special case that requires HEC-specific
solutions. Component models for parallelism, parallel data model coupling, and remote method in-
vocation between asynchronous parallel components are concepts wholly absent from commercial
offerings.

Components help to manage complexity. For end-users in HEC, components will reduce the
burden of software details, freeing up more energy to focus on the application science. Compo-
nents are especially well suited for the inherent complexity of exchanging and combining software
from multiple sources, thereby increasing accessibility of software. Finally, components afford
developers a whole new level of sophistication, opening possibilities for future capabilities that
would have been intractable otherwise.

As members of the Common Component Architecture Forum (CCA Forum)1 and researchers
in the Center for Component Technology for Terascale Simulation Software (CCTTSS)2, we have
implemented multiple component frameworks, dozens of components, and many full components-
based scientific applications; investigated issues of automation, performance, and robustness; and
paid careful attention to the issue of supporting legacy codes in the component paradigm. Yet there
is so much more to do. Components are no less than the next evolutionary step in software tech-
nology, beyond object-oriented programming which itself superseded structured programming.

1A grassroots organization dedicated to the benefits of component technology to bear in the simulation science, see
www.cca-forum.org.

2An Integrated Software Infrastructure Center funded by the DOE Office of Science SciDAC Program, see
www.osti.gov/scidac.

1



We recommend components to the High End Computing Revitalization Task Force (HECRTF)
as a strategic technology that improves the capability and accessibility of software while minimiz-
ing “time to solution” for end-users. In Section 2 we discuss the particular challenge of creating
and sustaining a HEC component economy, from a policy standpoint as well as Research and De-
velopment. Opportunities to migrate legacy software to the component paradigm are discussed
in Section 3. Promising new capabilities afforded by components for automated composition and
tuning of applications are presented in Section 4. In an even farther reaching vision, we highlight
in Section 5 how Interface Definition Languages, which even commercial components use, can be
improved by encoding not just calling interfaces but semantic context. In Section 6, we discuss
how the emerging high-performance scientific component programming environment challenges
the Single Program Multiple Data (SPMD) model and its underlying assumption of a static, homo-
geneous environment.

2 Creating and Sustaining a HEC Component Economy

Component technology allows the productive exchange of software at a finer granularity, greater
frequency, and broader range than traditional software libraries. Widely-used components will
have extended lifetimes, usually longer than the project or application for which they were orig-
inally developed. These are some of the important long-term benefits of component technology,
but they also highlight a number of challenges to the traditional “economy” for HEC software.

The component approach addresses technical barriers to effective software reuse, but might
aggravate the non-technical barriers. Components are generally harder to create than regular soft-
ware; their benefit does not come with the first use, but repeated reuse. Such repeated reuse implies
sustained maintenance. Unfortunately, obtaining funding specifically for software maintenance is
problematic. Emphasis on “software development cost” over “total cost of ownership,” or “sus-
tained value to the community” has the unfortunate side-effect of providing a financial disincentive
to effective software reuse.

Strategies for positive reinforcement of sharing software can readily be borrowed from the
Open Source Software (OSS) movement. Scientists can be rewarded by publishing components
that are featured in important applications. Scientists’ reputations can be built on the usability and
fidelity of their components. Although nothing precludes other approaches to handling the intel-
lectual property embodied in a component, the adoption of open source licenses and approaches
would facilitate precisely the kind of reuse and longevity that components are intended to provide.

It is important to recognize that not all useful components will gather a sufficiently large com-
munity to become self-sustaining. Even if a set of useful components could be self-sustaining
eventually, it takes time for communities to form and even then often requires a core band of
“benevolent dictators” to direct the enterprise. In the HEC context, the OSS model is vital for
achieving the economy of scale in users, but cannot completely negate all long-term maintenance
costs for components. In order to create and sustain a component economy, and reap its finan-
cial rewards, funding agencies will most likely need to “prime the pump,” and make on-going
investments in targeted cases.

The central marketplace for this economy will be component repositories. A cross between
SourceForge.org (where software is developed and maintained), Amazon.com (where merchan-

2



dise is distributed and consumers publish their recommendations), and an Object Request Broker
(which actually launches components); these repositories will serve as a virtual center of exchange
of ideas, technology, and software. In the context of HEC, special considerations such as licensing,
IP, export controls, etc. should also be taken into account. This is an important area of research, as
it will be the main portal into the HEC component world. Component repositories could also be
used as resources to develop metrics for “total cost of ownership” for software, or “sustained value
to the community.”

3 Migrating Legacy Software to Components

HEC components must provide a migration path for legacy software, or they will fail under the
sheer inertia of the existing code base. We identify two techniques to address this issue, one well
established, and the other an area of active research.

The current technique exploits the fact that components are programming language neutral
entities. Whenever two components are connected, each has no knowledge of the programming
language used for the other component. This also means that legacy codes can be componentized
in their native programming language, without requiring a rewrite in a different language. It does
often require wrappers be partially written by hand, which can vary from simple connections, to
extensive code analysis, depending on the quality and understanding of the legacy code’s design
and organization.

A second technique that deserves significant attention is automated componentization. This
technique actually parses existing source code and generates an intermediate form. Then, through
a series of transformations, it generates output source code that effectively wraps the legacy code
in a component wrapper. Reason would dictate that this automated solution would lack the cleaner
design of hand-wrapped legacy code, but as a practical matter some codes are simply too large and
arcane to handle any way but in an automated fashion.

Source-to-source transformation tools open up other interesting possibilities, such as ensuring
that specifications are kept consistent with evolving implementations, or generating components
that are semantically different from the original implementation. For example, automatic differ-
entiation could be used to generate new components that compute the derivatives of a component
implementing a problem-dependent function evaluation. Such components would then enable the
use of sophisticated algorithms that require derivatives, without requiring low-accuracy approxi-
mations or the burden of hand coding.

4 Automated Composition and Tuning of Applications

Software components are a plug-and-play technology; their very name comes from the fundamen-
tal concept of being composable. Component technology is also exceptionally well suited to sup-
porting domain-specific interface standardization efforts. Using components, the interfaces can be
defined in a platform and language neutral manner. Differing projects can then write their software
to implement that standard in the language of their choosing. Then, customers of the standard can
then write their application to the standard and arbitrarily swap between various implementations
at runtime, without a single line of source code modification.

3



With the possibility of hundreds, even thousands, of components executing on a peta-scale plat-
form, research is needed in tools to help automate selection and composition. A typical strategy to
mitigate the growing complexity of software is to compose pieces hierarchically into growing lev-
els of complexity, and expose the top of the hierarchy to users. This works well when the developer
properly anticipates how the hierarchy will be used, but when third party modifications of middle or
lower levels is attempted, mileage will vary. Richer interfaces presented by components can make
automated composition a new and intriguing alternative to static hierarchies. Tools could automate
the construction of a hierarchy on demand, responding to changes in inherited and synthesized
attributes of individual components in the hierarchy. For example, if one replaces an existing com-
ponent in the middle of a hierarchy, it may necessitate additional adjustments downstream in the
calculation, but it may also impose new requirements that must be anticipated upstream.

By varying composition rules and further augmenting the interfaces, new techniques for auto-
mated tuning, adaptive algorithms, and fault-tolerance become available. Automated composition
can utilize available information about performance requirements and capabilities of individual
components as well as information on the underlying execution architecture to tune component
compositions. Even if an application is automatically generated a near-optimal initial composition
of components, it is unlikely that the same composition will remain optimal in terms of achiev-
ing the best time to solution throughout a long-running application’s execution. In addition to
changing application requirements, large-scale simulations would likely be subject to hardware
or software failures. One cannot rely entirely on the fault-tolerance of hardware or low-level li-
braries to ensure an application completes successfully and efficiently. To address the dynamic
application requirements and recover from hardware fluctuation, applications must be adaptable.
Component technology provides new opportunity to implement and hide the software complexities
so the applications can simply exploit the added capabilities.

Although the plug-and-play capabilities and amenability to supporting standards is a reality
today, automated composition and tuning is still open to extensive research. How to scale per-
formance models and monitoring infrastructure to petaflop machine sizes is an open question.
Investigating how to effectively augment component interfaces with required information is part
of a larger issue in the following section.

5 Specification Technologies

Contemporary component interface specifications are generally limited to the calling interface
(also called API); which is insufficient for automated selection, composition, integration, and ap-
plication of components in scientific computing. In particular, they lack the information needed to
convey the purpose, context, performance, and proper usage of components in a machine-friendly
format. Currently such information must be gleaned from documentation or code inspection. This
places an unrealistic burden on computational scientists to understand the software and ultimately
limits reuse.

Specifications of semantic information and their automated discovery will enable a greater
variety of tools to truly reduce “time to solution” for component and application programmers.
Context information can be used to specify the types of problems a component has been designed
to address. Performance annotations have already been discussed in light of composition and
tuning. Annotations regarding the proper use of components should indicate how the supplied

4



software was designed to be employed. For example, a time integration component may have
means to advance time when given a floating-point number. By also annotating the specification to
indicate that the input argument must be a positive number in microseconds, tools can ensure that
the interface is being invoked properly and in the correct context.

In addition to providing explicit documentation, this kind of meta-information has the added
benefit of enhancing debugging. Specification technologies can also be used as a basis for tools
that compare specifications to their implementations. This can be beneficial for checking that the
specifications accurately reflect their implementations.

6 Programming Models beyond SPMD

The current programming methodologies, typically falling into the broad Single- Program Multiple
Data (SPMD) category, were primarily designed for static execution environments (e.g., a fixed set
of homogeneous processors fully dedicated and tightly coupled to work on a single application).
However, even today, applications on large systems experience a substantial variability in their
execution environment, which challenges the basic assumptions of the SPMD model. In complex
HEC applications, software components themselves can represent parallel tasks of variable length
and can span disjoint sets of processors. We expect that in the future these applications will in-
creasingly be more asynchronous, employ different mechanisms for fault tolerance, use different
mechanisms for latency tolerance such as multithreading, and even execute on variable sets of
processors, e.g., by employing MPI-2 dynamic process creation.

The efficient use of HEC components in such dynamic environments requires significant in-
roads into the areas of runtime support and execution environment abstraction. The runtime en-
vironment in which such components execute would need to provide better abstractions to shield
component developers from the need to manage complex runtime scenarios and configurations. A
delicate balance needs to be struck between facilitating ever more dynamic and complex compo-
nent interactions, and reducing the effect that such a runtime environment would have on applica-
tion performance.

For example, by hiding the gory details of remote method invocation (RMI), components in
industry have been very successful in making distributed programming look like serial program-
ming to the developer. In the context of HEC components, one can generalize to what looks like a
SPMD code actually being a collection of SPMD codes communicating via parallel RMI (PRMI).
This model has multiple programs, not just a single one, and they can work collaboratively and
asynchronously instead of following the traditional synchronous manner of SPMD processor cou-
pling.

7 Closing

Components pose a fundamental shift in HEC software methodology, capabilities, and accessibil-
ity. While the reasons to pursue it are legion, the full implications are still not broadly understood
throughout the community. Our list of issues and ideas regarding HEC components is only a sam-
pling of new opportunities that come with this emerging technology. Although components are
generally useful in many contexts, the specialized regime of high end computing requires special-
ized R&D to realize the performance and productivity gains that this technology has to offer.

5


