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Abstract 
The complexity of modern scientific software is an important issue that needs to be addressed as 
part of an effort to revitalize high end computing (HEC).  The complexity arises from both the 
scientific demands and the increasingly complex computers on which the software is run.  We 
believe that HEC software developers need to be able to use a higher level of abstraction to 
express their computational problems.  New programming models and technologies such as 
domain-specific languages coupled with automatic code generation, source-to-source translation 
tools, and component models are all sufficiently advanced that a concerted investment aimed at 
bringing them to HEC computational scientists will bring significant near-term payoffs. 

Introduction 
Through a combination of hardware and software improvement, the capabilities of high end 
computing (HEC) in scientific and engineering simulation have skyrocketed in recent years.  As 
this capability has grown, so have our expectations of, and, ultimately, our reliance upon 
computational science performed on HECs.  Indeed, computational simulation is now often 
described as the third leg of modern science, equal in importance to experiment and theory.  
However, these remarkable advances have often involved heroic efforts in software 
development. As the demands on computational science increase, the software driving the 
simulations becomes more complex due to increases in fidelity and problem size, as well as 
changes in solution methodology.  Additional complexity arises from the need to extract high 
performance from parallel computer architectures that are increasingly complex and varied. 

Although scientific simulation software itself has changed significantly with the rise of HEC, and 
the software environment in which it is developed has changed in outwardly improved a great 
deal, at the conceptual level the programming models and environments in which researchers 
develop software for modern machines are little different than when they were developed in the 
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early days of parallel computing. Consequently, the software developer is forced to deal directly 
with the increased hardware and scientific complexity, with obvious impacts on productivity, 
performance, portability, and scientific capability. 

We believe that a program to revitalize HEC should include the development of tools and 
techniques to provide the software developer with a higher level of abstraction that simplifies 
software development and increases productivity. The computer science research community has 
pursued a variety of projects over the years with a direct or secondary focus on raising the level 
of abstraction in software development. Although few of these efforts have actually impacted the 
work of computational scientists to date, we believe that the seeds are present, and with the 
benefit of a focused research effort, relevant capabilities can be made available to computational 
scientists in the FY 2005-2009 time frame of interest to the Task Force. 

Constraints 
It is important to recognize that targeting computational scientists in the relatively near term 
imposes some constraints on the types of computer science efforts likely to be positively 
received by those actually using high end computers for scientific simulation.  In many domains, 
simulation codes evolve and grow over the course of years, and sometimes decades.  The level of 
effort embodied in these codes often makes it impractical to rewrite them from scratch in a new 
language or a new paradigm.  Therefore, technologies that can accommodate existing code 
easily, approaches that can be applied incrementally, and those that work with widely used 
scientific programming languages, such as Fortran, are more likely to gain acceptance.  
Portability of both software and tools are important, and performance portability is often a 
significant concern – software developers are generally willing to spend effort tuning the 
performance of their code for a given platform only in proportion with the generality or 
portability of the result. 

Vision 
Raising the level of abstraction for HEC software involves programming models and 
environments that better support the range of architectures and diversity of implementations in 
high end computers with portable performance, and software development approaches that help 
manage overall software complexity.  

The complexity of current programming models is easily seen.  While extremely popular, 
traditional message passing paradigms require explicit coordination between sending and 
receiving processes. Important to HEC, increasing processor counts makes such coordination 
ever more challenging, and potentially performance-reducing.  Shared-memory programming 
models, often thread-based, are often considered easier to use, but do not easily lend themselves 
to the development of performance-portable algorithms on distributed shared memory or other 
platforms.  “Multi-level” parallel approaches, i.e., combining OpenMP and MPI are increasingly 
popular, reflecting the rise of HECs built as symmetric multiprocessors (SMPs) on high-speed 
interconnects. Experience to date suggests that while such approaches can sometimes achieve 
good results, they come at a significant cost in terms of code complexity and computational 
experimentation required to identify the best combinations of processes and threads (which 
typically cannot be intuited from simple information about the target computer).  A higher level 
of abstraction in this area would provide a simplified programming model capable of expressing 
the desired parallel algorithms, while automating the “implementation” on a given platform 
based on performance models for the hardware and software. We believe a programming model 
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that provides a shared memory abstraction will likely form the basis for the most effective 
approach; however, it is also important to provide migration paths for codes based on other 
models, especially message passing. 

The increasing levels of parallelism required to maintain efficiency in traditional single-program 
multiple data programs running on machines with ever-increasing processor counts is also a 
significant challenge, both in terms of scientific formulations that provide the required degree of 
parallelism and in terms of the management of so many processes. One way to finesse such 
issues is to move to an environment which facilitates the simultaneous use of coarse- and fined-
grain parallelism by allowing the running parallel job to be partitioned into a number of parallel 
sub-tasks (of different sizes) running concurrently. Such an environment must be largely or 
completely automated, and ideally would be capable of making decisions about the optimal 
partition size for each task based on performance models, as well as inferring computational 
dependencies among tasks.  Another important issue that arises with increasing parallelism and 
the linking of distributed HEC resources via the Grid is fault tolerance and recovery.  Large 
machines are reaching the point where the time required to boot the system is roughly equal to 
the mean time between failures.  The hardware, operating system, and programming 
environment must work together to provide users with simple, preferably transparent 
mechanisms to allow HEC software to tolerate faults. 

Although the use of available programming environments with modern HECs frequently leads to 
complicated programming in order to extract the best possible performance, the nature of the 
science, the problems, and the methodology needed to solve them also contributed significantly 
to the complexity of modern HEC software.  Raising the level of abstraction in this context 
entails being able to express the necessary computations at a higher level.  For example, through 
the use of domain-specific high-level languages, or component models which facilitate the 
assembly of large, complex applications from smaller, more manageable software units.  But to 
be truly effective, such approaches need to be combined with the capability to “reason” about the 
computational context in order to generate the most efficient code, or to assemble the most 
efficient set of components for the task and HEC platform at hand.  With the use of tools to 
automate aspects of code generation and application composition also comes the need to be able 
to validate the results they produce and verify final results of the code.  This will necessitate the 
increased use of formal specification languages and tools, and other approaches, which are 
currently little used in HEC. 

We draw on two analogies to help solidify our vision.  First is the modern approach to 
developing graphical user interface based applications from elementary widgets.  Widgets of 
increasing complexity can be composed into skeleton applications by automatic code generation 
tools.  Developers maintain the ability to alter “tunable” aspects of the widgets as they desire.  In 
HEC, the widget concept could be similarly used to abstract away certain details of the 
underlying programming environment.  The second comes from a recent DARPA High 
Productivity Computing Systems workshop, where the discussion repeatedly returned to 
MATLAB as the archetype of a high-level environment in which developers are extremely 
productive, but in which performance requirements cannot be easily satisfied.  What is needed 
then, is something akin to MATLAB at the top level, but which allows the user to drill down 
through the tool chain and intervene in the processing or code generation in order to tune the 
results. 
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In the following section we briefly describe some of the technologies we see as being important 
to our vision of raising the level of abstraction for the HEC software developer. 

Relevant Technologies 
Domain-specific languages and automatic code generation tools provide an obvious means of 
raising the level of abstraction.  Domain-specific languages (DSLs) allow software developers to 
express programs in a form that is tailored to the scientific domain of interest, typically closer to 
the way the scientist thinks about the problem than is possible in a traditional programming 
language. The DSL input can be processed in a variety of ways: interpreted, compiled into object 
code, or translated into a traditional programming language through the use of automatic code 
generation tools. Historically, DSLs have been viewed primarily as a convenience for the 
programmer – reducing the effort required to create software for experimentation, but generally 
not producing code with performance or capability suitable for production use.  However, a 
number of recent projects have shown that much more is possible.  In traditional software 
development, the developer must make many decisions regarding the implementation that are 
then fixed in the source code. A well-designed DSL can be viewed as a means of encapsulating 
the “science” before the implementation decisions are made.  Code generation tools can then be 
designed to include extensive and rigorous optimizations in the process of generating the 
traditional-language source code in a way that is not possible in the traditional development 
approach, as well as introducing appropriate code for fault tolerance and recovery and other 
features. Performance models for both the (generated) code and the target hardware platform can 
be used as additional input to the optimizations in order to tailor the generated code.  Such an 
approach can be used to address hardware differences, as well as simplifying the task of tailoring 
algorithms and code to different programming models, even on the same hardware (though 
clearly this requires a high level of abstraction in the DSL). DSLs coupled with optimizing code 
generation has the potential to bring tremendous benefits to HEC software development, but 
much work is needed to develop an infrastructure that allows DSLs and processors to be created 
quickly and easily. 

Source-to-source transformation tools (S2S) share with DSLs and automatic code generation 
tools many similar capabilities with respect to software development, but also provide a means 
of working with existing software.  S2S tools will facilitate the evolution of code that researchers 
can’t affort to rewrite from scratch. An important example would be the use of an S2S tool to 
transform a generically written code into one specialized to a particular programming model or 
hardware platform. Simple text tools (e.g., the unix sed command) are not sufficient to the task.  
Rather, tools are required that parse the source language to an abstract syntax tree (AST) and 
allow user-defined manipulations on the AST prior to writing code back out. As with 
DSL/automatic generation tools, some initial work has been done in this area, but efforts are 
needed to broaden the available languages, generalize the capabilities, and make it easier for 
software developers to express the desired transformations.   

S2S tools are obviously closely related to compilers, and can be derived from compiler tool 
suites. We note in general the need for high-quality, freely available and distributable (i.e., open 
source) compiler tools to support this and other HEC computer science R&D activities. An 
important gap in this area is the lack of production-quality open source compiler suites for 
Fortran 90/95/2000, an important language to HEC scientific software.  Preferably, such a tool 
suite should be integrated with or interoperable with compilers for a wide range of other 
languages. 
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Programming models, of course, have a tremendous influence on the level of abstraction and 
complexity of software. Unfortunately, message passing, presently the most widely used parallel 
programming model, can be likened to assembly language because the programmer must manage 
nearly every detail of the communication. Shared-memory models offer much greater ease of 
use, but the memory space is often treated as “flat”, promoting the development of algorithms 
that work well only on uniform memory systems (of which there are very few in HEC).  
However, experience has shown that a shared memory programming model which exposes the 
locality of data and promotes consideration of the non-uniform memory access hierarchy, is very 
effective in encouraging the development of parallel algorithms which are efficient across both 
shared- and distributed-memory platforms.  Approaches focusing on shared data rather than 
explicit links between processes also have a significant advantage when incorporating fault 
tolerance.  In message passing and similar approaches, access to the data manipulated by the 
parallel algorithm is a “second order” operation, which the programmer must translate into 
explicit instructions for process-to-process communications.  Failure of a process requires the 
programmer to find a new mapping between the data of interest and the processes they have to 
talk to.  In a data-centric model, on the other hand, the programmer indicates directly the data 
they want to access, paving the way for the underlying environment to transparently relocate the 
data.  Data-centric models are also more amenable to techniques such as redundant storage (for 
example, using an in-memory RAID-like approach to distributed data structures) to facilitate 
recovery from a fault. Programming models designed from the start with fault tolerance 
capabilities will also be more amenable than when it is grafted on to existing environments. 
Data-centric approaches will also work better in environments that provide workflow/scheduling 
capabilities to provide increased parallelism, as mentioned in the Vision section. 

With mixed-language programming on the rise, is it important that programming models be 
available across the major HEC languages in an interoperable form.  The question of whether 
programming models are implemented as libraries or as compilers is also relevant.  The use of 
source-to-source transformation tools can help to blur the distinction, and to make compiler (-
like) solutions more universally available.   

Component models are emerging as an important tool for managing the complexity of large-
scale software systems in the business and internet communities.  While domain-specific 
computational frameworks have been used in HEC for some time, only recently have efforts 
begun to develop the more flexible and extensible component approach for HEC.  Components 
raise the level of abstraction by treating functional units of software as building blocks for large-
scale applications.  These units (components) are defined by the interface they present while 
their internal implementation remains opaque.  The component approach promotes the creation 
of reusable, interoperable software with a potential user base much larger than if the code were 
embedded in a monolithic application. With a large suite of components available for numerical 
solvers, data management, and other common needs, many researchers would be able to 
assemble applications from a large proportion of “off the shelf” components, thus increasing 
productivity.  Tools to facilitate selection of components, automatic composition, and 
performance tuning will be very useful in reducing software complexity. 

Finally, most of the technologies cited above involve some degree of automation of the process 
of code generation or application composition.  To have confidence that such tools are doing 
what they claim, and that the resulting applications will run reliably and produce correct results, 
specification languages and verification technologies will also become increasingly important. 


