
Managed by UT-Battelle
for the Department of Energy

Java Primer

Thomas Pelaia II, Ph.D.

XAL Lecture Series

Lesson 1

July 1, 2008

 Managed by UT-Battelle
for the Department of Energy

Java Primer

XAL Lecture Series

1. Java Primer

2. Tour of XAL

3. Building Java Applications in XAL

4. Ruby Primer

5. Scripting Applications in XAL

6. Channel Access in XAL

7. XAL Accelerator Hierarchy

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Java Primer

• Procedural Programming
• Object-Oriented Programming
• Java Language Overview
• Programming Guides
• Tour of Java Packages
• Java Resources

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Procedural Programming

• Foundation for most languages
• Natural at the machine level

– Flow of code analogous to low level execution
– Sequential write statements to be executed

sequentially
– Logical Flow Control operations

• Functions encapsulate reusable code
• Global variables allow sharing of named data

across functions and libraries
• Local variables provide named data storage within

a block of code

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Sample Procedural Pseudocode Snippet

def distance(x1, y1, x2, y2)
 return sqrt((x1 - x2)^2 + (y1 - y2)^2)
end

electron_x = 1.0
electron_y = 2.0
electron_charge = -1.6e-19
proton_x = 4.0
proton_y = 5.0
proton_charge = 1.6e-19
k = 9e9

elec_prot_dist = distance(electron_x, electron_y, proton_x, proton_y)
elec_prot_force = k * electron_charge * proton_charge / elec_prot_dist^2

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Object-Oriented Programming

• Structured code
• More natural for human processes

– Different objects have different roles
– Objects can be classified according to characteristics

and behavior

• Motivated by good programming practices but not
a substitute for them

• A Class is a template for objects
• Objects encapsulate data and operations to be

performed on data

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Sample Object-Oriented Pseudocode
Snippet

class Point
 float x, y
 def distanceTo(Point point)
 return sqrt((x - point.x)^2 + (y - point.y)^2)
 end
end

class Particle
 static float k = 9e9
 Point location
 float charge
 def forceFrom(Particle particle)
 return k * charge * particle.charge / (location.distanceTo(particle.point))^2
 end
end

Particle electron = Particle.new(Point.new(1.0, 2.0), -1.6e-19)
Particle proton = Particle.new(Point.new(4.0, 5.0), 1.6e-19)

elec_prot_force = electron.forceFrom(proton)

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Object-Oriented versus Procedural
Programming

Procedural Object-Oriented
Low Initial
Overhead ✔ X

Scales well with
Growth X ✔

Provides
Classification X ✔

Data
Encapsulation X ✔

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Java Language Overview

• Java is in its sixth major release
– We use Java version 5 due to Linux bugs for version 6

• Platform independent
• Strongly typed (and case sensitive)
• Object-Oriented
• Dynamic (Somewhat)
• Garbage Collected
• Big and complex language

– Too big to completely cover here

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Class

• Classification of objects
• Template for instantiating objects

– Defines typed data associated with the class (Class
Variables)

– Defines an instantiated object’s typed data structure
(Instance Variables)

– Defines how to initialize class variables (Static
Initializer)

– Defines how to initialize an object (Constructors)
– Defines operations on a class (Static Methods)
– Defines operations on an object (Methods)

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Instance Members

Note that instance methods and instance variables are
collectively referred to as instance members.

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Variable Types

• Local
– data local to blocks and methods
– persists only during block/method execution

• Instance
– data available to an object
– persists along with an object

• Class
– data available to a class independent of instance
– persists for duration of program execution

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Variables Example

/** Defines a Cartesian Point */
public class Point {
	 static final public double METERS_TO_MM = 1000.0;
	 public double x;
	 public double y;
}

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Constructors

• Construct an object (instance of a class)
– Performs initialization of an object’s instance variables
– Sometimes performs other operations during object

initialization

• Multiple constructors for the same class identified
by argument list

• Good practice to define a primary constructor
which all other constructors call

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Constructor Example

/** Defines a Cartesian Point */
public class Point {
	 static final public double METERS_TO_MM = 1000.0;
	 final public double X;
	 final public double Y;

 /** Primary Constructor */
 public Point(final double x, final double y) {
 this.X = x;
 this.Y = y;
 }

 /** Empty Constructor */
 public Point() {
 this(0.0, 0.0);
 }
}

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Method Types

• Instance Method
– Performs operations on an object’s data
– Can call static methods
– Can access static variables

• Static Method
– Performs operations on a class’s static data
– Sometimes called “Class Method”
– Instance members aren’t available to it
– Oddly, no access to the class itself

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Method Example

/** Defines a Cartesian Point */
public class Point {
	 static final private double METERS_TO_MM = 1000.0;
	 final protected double X;
	 final protected double Y;

 /** Primary Constructor */
 public Point(final double x, final double y) {
 this.X = x;
 this.Y = y;
 }

 /** Factory method to instantiate a point using polar coordinates */
 static public Point getPolarPoint(final double r, final double theta) {
 return new Point(r * Math.cos(theta), r * Math.sin(theta));
 }

 /** Accessor to get the horizontal coordinate */
 public double getX() {
 return X;
 }

 /** Accessor to get the vertical coordinate */
 public double getY() {
 return Y;
 }

 /** Calculate the distance from the origin */
 public double distanceFromOrigin() {
 return Math.sqrt(X * X + Y * Y);
 }

 /** Compute the distance to another point */
 public double distanceTo(final Point point) {
 return Math.sqrt((X - point.X) * (X - point.X) + (Y - point.Y) * (Y - point.Y));
 }
}

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Member Access Control

Keyword Member Access From

Public

Private

Protected

Package

public Any object

private Objects of the same class

protected Objects of the same class,
its subclasses and objects
of classes within the same
package
Objects of classes within the
same package

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Class Inheritance

• Java supports single class inheritance
• Instance members may be added
• Instance methods may be overridden
• Only the empty constructor is inherited
• All of a class’s instance members are inherited but

public, protected and sometimes package
members are accessible to a subclass

• No static members are inherited
• The “super” keyword refers to the superclass’s

version of a member

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Inheritance Example

/** Defines a 3D Cartesian Point */
public class Point3D extends Point {
	 final protected double Z;

 /** Primary Constructor */
 public Point3D(final double x, final double y, final double z) {
 super(x, y);
 Z = z;
 }

 /** Accessor to get the longitudinal coordinate */
 public double getZ() {
 return Z;
 }

 /** Calculate the distance from the origin */
 public double distanceFromOrigin() {
 return Math.sqrt(X * X + Y * Y + Z * Z);
 }

 /** Compute the distance to another 3D point */
 public double distanceTo(final Point3D point) {
 return Math.sqrt((X - point.X) * (X - point.X) + (Y - point.Y) * (Y - point.Y) + (Z - point.Z) * (Z - point.Z));
 }
}

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Interfaces

• Declares a set of methods that implementing
classes define

• Allows for abstraction across otherwise unrelated
classes

• Classes may implement multiple interfaces

 Managed by UT-Battelle
for the Department of Energy

Java Primer

/** Defines methods common to an object capable of greeting someone */
public interface Greeter {
 /** Return a greeting to the specified named individual */
 public String greet(final String name);
}

/** Defines a Person */
public class Person implements Greeter {
 final String NAME;

 /** Primary Constructor */
 public Person(final String name) {
 NAME = name;
 }

 /** Return an greeting to the specified named individual */
 public String greet(final String name) {
 return “Hello, ” + name + “! My name is ” + NAME + “.”;
 }
}

/** Defines a Computer */
public class Computer implements Greeter {
 /** Return an greeting to the specified named individual */
 public String greet(final String name) {
 return “Hello, ” + name + “! I am your computer and ready to perform tasks for you.”;
 }
}

Interface Example

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Commonly Used Control Statements

• if / else conditional execution

• continue / break flow control

• switch / case option execution

• for loop execution

• while loop execution

• try / catch / finally exception handling

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Programming Guides

• Design for change
• Keep it simple
• Code should be self documenting

– Use consistent expressive names for variables,
methods, classes, packages, etc.

• Code and test incrementally
• Minimize dependencies

– Use strictest access control
• instance variables typically protected or private
• instance methods typically public

• Optimize code through good practices

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Design Patterns (Few of many)

• Delegate Pattern
– An object is delegated to perform certain operations on

behalf of another object

• Adaptor Pattern
– An adaptor binds otherwise separate pieces of code
– Allows for good code separation

• Model-View-Controller (MVC) Pattern
– A model and its view are independent
– A controller binds a model to its view
– Allows for good code separation

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Delegate Example

• An interface may define Logging methods
• A ConsoleLogger class may implement the

Logging methods to log to a console
• A CentralLogger class may implement the Logging

methods to log to a persistent store
• An object uses a Logging delegate to log its output

– By default the object my log to the console using a
ConsoleLogger

– Its Logging delegate may be set to the
CentralLogger to redirect its output to the persistent
store

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Adaptor Example

• Problem
– A WireScanner class and a BPM class are different, but

both can measure beam position
• The classes were implemented by different vendors who did not

know about the other’s devices
• Each class implements different methods for measuring the beam

position

• Solution
– A PositionMeasurer interface is defined to measure

position but neither WireScanner nor BPM implement it
– WireScanPositionAdaptor and BPMPostionAdaptor

classes are defined to implement PositionMeasurer and
operate internally on instances of the WireScanner and
BPM classes respectively

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Model-View-Controller Example

• You have two different models for calculating the
beam energy from measurements

• You have written a view to display the current
measured beam energy

• You wrote another view for displaying the history
of the measured beam energy while updating with
the live one

• Separate controllers allow you to bind the existing
views and models as your wish

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Packages

• Classes are organized into packages
• Packages provide namespace resolution
• Import statements resolve which package

namespaces to use
– can import an entire package
– can import individual classes within a package

• java.lang package is imported by default

 Managed by UT-Battelle
for the Department of Energy

Java Primer

// Specify the package in which this class belongs
// All public classes within this package will be in this name space
package gov.sns.apps.greatapp;

import java.io.*;
import java.util.List;
import java.util.ArrayList;

/** Defines a Helper for my great application */
public class Helper {
 // Let’s assume we have some code here

 /** Write something to the given file */
 public void write(final File aFile) { // note that File is in the imported java.io package
 final List aList = new ArrayList(); // note that List and ArrayList were imported explicitly
 // Some code here to write to the given file
 }
}

Package Example

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Tour of Java Packages

• Java includes thousands of classes in dozens of
packages

• A few commonly used packages
Package Description

Core

Utilities

Input/
Output
User
Interface

java.lang System, thread control, math,
numeric types

java.util Lists, hash tables

java.io File operations, input/output
streams

javax.swing User interface components
and layout

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Core Java Package Sample
java.lang

Class Description

System Manage the runtime environment;
Standard input/output/error

Math Common math functions (sine,
cosine, logarithm, square root, …)

Thread Spawn and manage threads

Number Concrete subclasses for numeric
values (Double, Integer, Boolean, …)

Class Class introspection; Load classes;
Instantiate an instance;

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Java Utilities Package Sample
java.util

Class or
Interface

Description

List Interface for lists (get elements, add
elements, count elements, iterate)

ArrayList Concrete List implementation

Map Interface for container of key-value
pairs (get and put keyed values)

HashMap Concrete Map implementation

Collections Functions on collections (sort,
search, rotate, reverse, …)

Timer Schedule operations

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Java Input/Output Package Sample
java.io

Class Description
File File representation; File path

operations; Get and Set file
properties

InputStream Read a stream of bytes

OutputStream Write a stream of bytes

Reader Read a character stream

Writer Write a character stream

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Java User Interface Package Sample
javax.swing

Class Description
JFrame Window

JDialog Dialog box

JTable Table view of data presented in row/
column format

JList Vertical view of a list data

JScrollPane Container which scrolls its content

JTextField Control which takes text input

JButton Control which handles mouse
presses

 Managed by UT-Battelle
for the Department of Energy

Java Primer

Java Resources

• Java Site: http://java.sun.com
• Java Guide: http://java.sun.com/j2se/1.5.0/docs/
• Java API: http://java.sun.com/j2se/1.5.0/docs/api/
• Java Download: http://java.sun.com/javase/

downloads/index_jdk5.jsp
• Ant: http://ant.apache.org/

http://java.sun.com
http://java.sun.com
http://java.sun.com/j2se/1.5.0/docs/
http://java.sun.com/j2se/1.5.0/docs/
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://ant.apache.org
http://ant.apache.org

