The physics of blue lasers, solar cells, and stop lights

Paul Kent

University of Cincinnati & ORNL

The physics of blue lasers, solar cells, and stop lights

Paul Kent

Solid State Theory Group National Renewable Energy Laboratory

Thanks to: Alex Zunger & SST Group/Basic Sciences

U.S. Department of Energy Office of Science Basic Energy Sciences Division of Materials Sciences

Outline

1. Introduction

Nitride semiconductors Novel phenomena. Localized states

2. How can we model these systems? Computational techniques

3. New photovoltaic materials GaAsN (and GaPN) Band gap reduction. Localized states

4. Blue emitters

InGaN Localization at In inhomogeneities

Absorption in semiconductors

High Efficiency Multijunction Solar Cells

Isostructural semiconductor alloying

Properties approx. a linear combination of the components

Anomaly #1: Band gap reduction in GaAsN

Shan et al. Phys. Rev. Lett. 82 1221 (1999)

Band gap reduced by ~120meV per % nitrogen!

Anomaly #2: Dilute Nitrogen in GaAs

Liu, Pistol and Samuelson. Appl. Phys. Lett. 56 1451 (1990) T. Makimoto et al. Appl. Phys. Lett. 70 2984 (1997)

Many sharp lines seen in emission!

Outline

1. Introduction

Nitride semiconductors Novel phenomena. Localized states

2. How can we model these systems? *Computational techniques*

3. New photovoltaic materials GaAsN (and GaPN) Band gap reduction. Localized states

4. Blue emitters

InGaN Localization at In inhomogeneities

Simplified view of a semiconductor alloy

Simu Distr 10^3 Atom

Simulate regular lattices Distributions of atoms 10^3-10^6 atoms required Atomic relaxation important

Computational Modeling of Alloys

Small Supercell Approach

> Large Supercell Approach

Use large supercells (10^3-10^6 atoms) containing many nitrogens
Statistically average properties of many random configurations
Use Valence Force Field for structural relaxation
Use Empirical Pseudopotential Method for wavefunctions

Folded Spectrum Method (FSM)

Outline

1. Introduction

Nitride semiconductors Novel phenomena. Localized states

2. How can we model these systems? Computational techniques

3. New photovoltaic materials *GaAsN (and GaPN) Band gap reduction. Localized states*

4. Blue emitters

InGaN Localization at In inhomogeneities

High Efficiency Multijunction Solar Cells

Anomaly #1: Band gap reduction in GaAsN

Shan et al. Phys. Rev. Lett. 82 1221 (1999)

Band gap reduced by ~120meV per % nitrogen!

Anomaly #2: Dilute Nitrogen in GaAs

Liu, Pistol and Samuelson. Appl. Phys. Lett. 56 1451 (1990) T. Makimoto et al. Appl. Phys. Lett. 70 2984 (1997)

Many sharp lines seen in emission!

I will discuss three cases:

1. Isolated Nitrogen

- 2. Pairs and clusters
- 3. Well-developed alloys

Nitrogen localized $a_1(N)$

In Ga<u>P</u>:N (0.01%):

Level ~30 meV below CBM Introduces Γ character

Any concentration of nitrogen in GaP creates "direct gap" character

Localized Level in GaAs:N

Nitrogen localized level ~ 150 meV inside conduction band

1. Isolated Nitrogen

2. Pairs and clusters

3. Well-developed alloys

N Clusters in GaAs, GaP

1. Ga(P_mN_{4-m}) Clusters

2. [1,1,0]-Oriented Nitrogen Chains

Energy levels of Clusters and Chains in GaP

- 1. Isolated Nitrogen
- 2. Pairs and clusters
- 3. Well-developed alloys

E_{CBE} = **Delocalized Conduction Band Edge**

Two types of state observed

Amalgamation Point: Lowest energy PHS just below CS

Band gap reduction

Anticrossing/repulsion between band edge and localized states drives band gap down

Red Shift of PL vs PLE

1. Small nitrogen aggregates create near-gap levels Some "cluster state" levels are deep, even for small aggregates

2. Cluster states are ≈ fixed in energy

3. Host states move down, overtaking the cluster levels, one-by-one

Host states repelled from nitrogen resonant levels

4. Both localized and delocalized states exist at the band edge

Kent & Zunger Phys. Rev. Lett. 86 2613 (2001)

Kent & Zunger Phys. Rev. B **64** 5208 (2001) Kent & Zunger Appl. Phys. Lett. **79** 2339(2001)

Outline

1. Introduction

Nitride semiconductors Novel phenomena. Localized states

2. How can we model these systems? Computational techniques

3. New photovoltaic materials GaAsN (and GaPN) Band gap reduction. Localized states

4. Blue emitters

InGaN Localization at In inhomogeneities

Despite large defect density InGaN alloys emit

- Time resolved PL many length (time) scales
- Theory: Bulk InGaN alloys emit weakly

Q. What is the role of In inhomogeneity?

InGaN band offsets

Experimental Observations

HRTEM InGaN MQW Lin et al. APL **77** 2988 (2000)

InGaN Intrinsic Dot Calculations

Spherical dot in 141000 atom supercell

Dot: High In composition 80%+

Alloy supercell: Lower In composition 33%

Electrons Quantum confined on dot

Holes Localized in/near dot (strain, alloy fluctuations)

Small In-rich regions give large "band gap" reduction

Hole Localization in Random Alloys

Holes localize near (statistically occurring) (1,1,0)-oriented Indium chains!

Indium fluctuations are key

Localized states occur near VBM, CBM

Indium fluctuations are key - localization easily results => Can specify quality of growth required for opto devices

- Small (~30 A) In-rich (80%+) regions cause low energy PL
- Localized hole states exist even in random alloy

Kent & Zunger Appl. Phys. Lett. 79 1977 (2001)

 Nitride alloys display "new physics" due to formation of localized states

2. Large-scale computational modeling can help explain nitride properties

prc.kent@physics.org http://www.physics.uc.edu/~pkent

Political Map of the World, June 2002

