Carrier induced ferromagnetism in II-IV-V₂ Mn-doped chalcopyrites

Paul Kent University of Tennessee

Thomas Schulthess ORNL

Funding: DARPA

Problem: Low Mn solubility in III-Vs

- Low solubility; Mn²⁺ poorly suited to group III site in III-Vs
- Mn introduces holes and spins in III-Vs
- Look for III-V compatible materials with higher Mn solubility

II-IV-V₂ chalcopyrites (e.g. CdGeP2)

II-IV-V₂ Structure: III-V Zinc-Blende structure "on average" Motivation: Mn²⁺ readily substitutes on group II site **Medvedkin proposed**: Hole-creating defects result in ferromagnetism (Medvedkin JJAP **39** L949 (2000))

Theory:

Antiferromagnetism (AFM) dominates in bulk, like II-VIs. Dopable (Zhao & Freeman PRB **65** 094415 (2002))

Carriers promote ferromagnetism(FM); anti-site defects are energetically prefered under certain growth conditions (Mahadevan & Zunger PRL **88** 047205 (2002)) High T_c s have been observed, but the location, distribution of Mn, and nature of magnetism is uncertain

Cd_{1-x}Mn_xGeP₂: T_c>RT x=variable Medvedkin JJAP **39** 949 (2000)

Zn_{1-x}Mn_xGeP₂: T_c~300K x=0.2 Medvedkin JCG **236** 609 (2002)

Zn_{1-x}Mn_xGeSiN₂: T_c>200K x~0.05 Pearton JAP **92** 2047 (2002)

Zn_{1-x}Mn_xSnAs₂: T_c=329K x=0.01 Choi JJAP **39** 949 (2000)

Question: Which chalcopyrites have high T_c ?

Guide to T_c : Exchange interaction between Mn pairs calculated via energy difference in FM and AFM configurations.

Three Mn pairs calculated:

II-II e.g. Mn on nearest-neighbor Zn sites
II-IV e.g. Mn on nearest-neighbor Zn/Ge sites
IV-IV e.g. Mn on nearest-neighbor Ge sites

Density functional calculations (PW91 GGA, PAW) 64 atom supercells. d electrons in valence.

Antiferromagnetic interactions between II-II pairs

Antiferromagnetism dominates Also confirmed for 25% Mn [001] superlattices

Ferromagnetic interaction between defects

Predominant ferromagnetic interaction between "anti-site" defects. Largest in Zn-compounds.

Hole doping promotes ferromagnetic interaction between II-II pairs

Strong AFM preferences overcome by hole doping

J vs lattice constant

No simple relation between lattice constant and ferromagetism

J vs lattice constant

No simple relation between lattice constant and ferromagetism

Doping or defects promote ferromagnetism

J (hence T_c) higher in Zn compounds than prototypical CdGeP₂

No simple relation between T_c (or J) and lattice constant, as per simple models.

Many possibilities for influencing T_c (elements, doping, growth), lattice matching to common substrates

Submitted to Applied Physics Letters Preprint from prc.kent@physics.org