DFT Calculations of Magnetic FePt Nanoparticles

Paul R. C. Kent, Don Nicholson, Markus Eisenbach, Thomas Schulthess / ORNL Support: DOE Calculations: Cray XIE / NLCF prc.kent@physics.org

Motivation

Nanostructured FePt has potential applications in magnetic storage. (Session Z22 Friday)

Fe₃O₄ (8nm)/Fe₅₈Pt₄₂ (4nm). TEM. I. Large magnetic anisotropy of LI₀ ordered f.c.t. FePt

2. FM nanoparticles have been synthesized.

Q. How do <u>size</u>, <u>disorder</u>, shape, concentration influence nanoscale magnetic properties of FePt?

Methods

- I. Plane wave LDA DFT (VASP)
 - PAW method. Bulk and fully relaxed geometries
 - Periodic supercells. >10A vacuum between particles
 - Up to 807 atoms
- 2. Multiple scattering LDA DFT (LSMS)
 - Real space method
 - Not full potential. Use bulk or PAW geometries.
 - Future: Non-collinear magnetism. Model building

Bulk FePt is AFM in LDA

Strong sensitivity to c/a. Can force FM. Brown et al. PRB 68 052405 (2003)

Fully relaxed gives AFM

FePt structures

Perfect LI₀ ordered planes of Fe and Pt atoms cleaved from bulk (c/a=0.966). Nominally I:I ratio Fe:Pt.

807 atoms

Strong size effects in magnetic moments

AFM results

- Preferred ordering: AF planes
- AFM or ferri' depending on size, geometry, symmetry
- Small size alone is insufficient to stabilise strong FM

- Near-surface Fe atoms have enhanced moment
- Relaxations can be significant. AF spins!

Disorder

- Random occupations with LRO c[Fe]-c[Pt]=0.80
- Partial FM order stabilised via Fe on Pt planes
- Configuration dependent. Delicate competition between FM (via Fe on Pt sites) and AFM (FePt)

Multiple scattering

- Modest agreement with PAW. Smaller moments.
- Difficult convergence!

Conclusions

Disorder required to stabilize FM/non-AFM. Nanoscale alone is insufficient

Magnetic moments FePt nanoparticles strongly dependent on size, disorder

Multiple scattering close to PAW results