A Gentle Introduction to Electronic Structure Theory

Paul R. C. Kent http://www.ornl.gov/~pk7

Support: CDP Energy Frontier Research Center, US DOE, Office of Science. Computers: NERSC, OLCF

My background

Distribution of papers by method (non-exclusive)

Background

 Density functional theory has become a very popular technique for obtaining the structure, energies, and properties of materials, molecules, and nanosystems

- Increasing ease of use and computational affordability will drive even more usage
- Significant problems remain for chemicals and materials

Key references

- "Electronic structure", Richard M. Martin, Cambridge University Press (2004)
 - Excellent and ~complete DFT introduction
 - Little discussion of classical MD or multiscale modeling

INSTITUTE OF PHYSICS PUBLISHING

MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING

Modelling Simul. Mater. Sci. Eng. 13 (2005) R1-R31

doi:10.1088/0965-0393/13/1/R01

TOPICAL REVIEW

Designing meaningful density functional theory calculations in materials science—a primer

Ann E Mattsson¹, Peter A Schultz¹, Michael P Desjarlais², Thomas R Mattsson² and Kevin Leung³

¹ Computational Materials and Molecular Biology, Sandia National Laboratories Albuquerque, NM 87185, USA

² HEDP Theory/ICF Target Design, Sandia National Laboratories Albuquerque, NM 87185, USA ³ Biomolecular Materials and Interfaces, Sandia National Laboratories Albuquerque, NM 87185, USA

E-mail: aematts@sandia.gov, paschul@sandia.gov, mpdesja@sandia.gov, trmatts@sandia.gov and kleung@sandia.gov

Received 9 July 2004, in final form 8 October 2004 Published 18 November 2004 Online at stacks.iop.org/MSMSE/13/R1

Richard M. Martin

- A. E. Mattsson et al. Modelling Simul. Mater. Sci. Eng. 13 R1 (2005)
 - The art & craft of real calculations
 - Recommendations

Outline

- 1. A density functional theory primer
- 2. A visit to the "zoo" of density functionals
 - Why so many? How are they related?
 - What are the evolutionary pressures and are they helping materials science?
- **3. Practical computations**
 - What is feasible using the most popular plane wave pseudopotential approach?
 - Motivations for alternative approaches and implementations
- 4. Summary

Questions are welcome

Outline

1. A density functional theory primer

2. A visit to the "zoo" of density functionals

- Why so many? How are they related?
- What are the evolutionary pressures and are they helping materials science?
- 3. Practical computations
 - What is feasible using the most popular plane wave pseudopotential approach?
 - Motivations for alternative approaches and implementations

4. Summary

We aim to solve the many-body Schrodinger equation

$$\hat{H}\Psi = E\Psi$$

$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 \right) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j\neq i}^{N} \frac{Z_i Z_j}{4\pi\epsilon_0 |\mathbf{r}_i - \mathbf{r}_j|}$$

- All electrons interact with all other electrons
 - The electron-atom interactions are simple within the Born-Oppenheimer approximation
- Finding the ground state is exponentially difficult
 - Claimed to be NP hard M. Troyer PRL 94 170201 (2005)

Formal density functional theory

Hohenberg-Kohn theorem(s)

Phys Rev **76** B6062 (1964)

- The ground state energy is uniquely determined via the minimum of a universal Functional of the density
- A massive simplification: one density instead of N electrons

 $E = F[\rho]$

- Only an existence proof. Exact.
- Kohn and Sham derived a coupled set of single particle Shrodinger equations enabling the density to be found

$$E\left[\rho(\mathbf{r})\right] = T_s\left[\rho(\mathbf{r})\right] + \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + E_{XC}[\rho(\mathbf{r})] + \dots$$

$$T_s\left[\rho(\mathbf{r})\right] = -\frac{1}{2} \sum_{i=1}^{N} \int \psi_i^*(\mathbf{r}) \nabla^2 \psi_i(\mathbf{r}) d\mathbf{r} \qquad \rho(\mathbf{r}) = \sum_{i=1}^{N} |\psi_i(\mathbf{r})|^2 \qquad \text{Functional}$$
bic is purportionally tractable
$$Phys \text{ Rev } \mathbf{140} \text{ A1133 (1965)}$$

This is numerically tractable

AK RIDGE National Laboratory

Summary

- DFT provides a formally exact and equivalent way of solving the Schrodinger equation
- It leads to sets of equations that are numerically tractable
- However, the formal derivations give little guidance in the choice of Functional

Outline

- 1. A density functional theory primer
- 2. A visit to the "zoo" of density functionals
 - Why so many? How are they related?
 - What are the evolutionary pressures and are they helping materials science?
- 3. Practical computations
 - What is feasible using the most popular plane wave pseudopotential approach?
 - Motivations for alternative approaches and implementations

4. Summary

The zoo of functionals

- Size of word ~ a recent (unscientific) measure of popularity
- After 30+ years of development there are hundreds of functionals...
- ...but many are designed for chemistry and fail badly for materials.
 e.g. B3LYP fails for metals.
- In practice, we have to test the quantities of interest

Performance

 For simplicity, will look at histograms of lattice constant errors. In principle we should consider all properties of interest. Are trends correct?

- Test set is 40 common <u>semiconductor</u> systems "SC40"
- HSE shows less scatter than older cheaper functionals (LDA, PBE), but mean error is not dramatically improved

Performance

Lattice constants:

Scale is O(1%)

No simple story even for metals

Hybrids (HSE...) consistently better in semiconductors

Some trends visible in related materials

Schimka JCP **134** 024116 (2011)

The zoo of functionals

- Derivations of DFT do not sufficiently strongly guide choice of functionals
 - Exact limiting behaviours can be/are included
- Fitting a few parameters to data sets is increasingly common
 - Different data sets lead to different functionals
 - Materials are rarely included in the fitting sets (!)
 - Need more "selective pressure" here from materials scientists
- There is a popular belief that adding increased orbital (& gradient) dependence to the method will give increased accuracy
 - Must be true eventually
 - Does not guarantee improvement along the way...

Jacob's Ladder of Functionals

An organizing principle suggested by John Perdew

"Jacob's Dream" by Marc Chagall via M. Marques

"Heaven of chemical accuracy"

All orbitals (gen. RPA)

Occupied orbitals

 $\rho, \nabla \rho, \tau$ metaGGA

 $\rho, \nabla \rho \qquad \text{GGA}$

 μ LSDA
 J. Tao et al. PRL 91 146401 (2003) (TPSS paper) and refs within

 Problems: could easily move up a rung and lose accuracy for some material/property. Ladder is as much driven by complexity (cost) as accuracy. Many possible ladders/routes to improvement...

Key problems of DFT in practice

1. "The method does not converge to the right answer"

- The theory is not systematically improvable. No easily accessible small parameter to converge. The formal derivations of DFT do not <u>sufficiently</u> guide functional development
- Physical insight helps, but only to a certain extent
- Difficulty of making consistent improvements invites empiricism

2. Electrons interact with themselves, "self-interaction"

- A special case of #1
- Extremely problematic for localized d,f electrons
- Helped to some extent by orbital dependent functionals
- 3. Dispersion interactions are not well described
 - A special case of #1
 - Van der Waals functionals are making great progress...
 - ...but have yet to be fully integrated with developments for #2

Example: Defects in Si

- Problem: LDA and GGA DFT predict self-diffusion activation energies 1/1.5eV lower than experiment
- The first QMC calculations on defects (1999) found defect formation energies much closer to experiment.
- More recent calculations (2006) confirm this and also find newer DFT functionals give better results
- But HSE is expensive
 N⁴ vs N³ scaling

Leung et al. PRL **83** 2351 (1999) Batista et al. PRB **74** 121102 (2006)

Diffusion QMC bulk fcc aluminium

With twisted-boundary conditions and extrapolation to infinite supercell

Self-interstitials in fcc aluminium

		0.0			0
<100>-dumbbell			octahedral site tetrahedral site		
	Increasing relaxation volume $ \Omega_{ m rel} $ Formation Energy (eV)			Relaxation volume (Ω_{o})	
	GGA (PBE)	DMC	Experiment	$\Omega_{\rm rel}$ (calc.)	Experiment
<100>-dumbbell	2.70	2.94	3.0, 3.2(5)	2.29	1.9(4), 1.7(4)
octahedral	2.91	3.13		2.42	
tetrahedral	3.23	3.56		2.52	

Typical GGA DFT error for defects in Al ~ a few 0.1 eVs / 1000s K

Hood et al. PRB **85** 134109 (2012)

Density functionals poll (?!)

<u>http://www.marcelswart.eu/dft-poll</u>

near?

- "...there was a discussion in Can Paco (the bar at the faculty of Chemistry at the University of Girona)."
- A "popular vote" for functionals (mostly among chemists)
- A new functional that contains and weights all the functionals by popularity was constructed...

Density functionals poll (?!)

- A new functional that contains and weights all the functionals by popularity was constructed...
- ...which performed worse than the best Truhlar functionals! (M06)
- Improving density functionals is no easy task

Outline

1. A density functional theory primer

2. A visit to the "zoo" of density functionals

- Why so many? How are they related?
- What are the evolutionary pressures and are they helping materials science?

3. Practical computations

- What is feasible using the most popular plane wave pseudopotential approach?
- Motivations for alternative approaches and implementations

4. Summary

Plane wave pseudopotential method

- A highly practical and popular method, fast enough for molecular dynamics, with many implementations:
 - ABINIT, CASTEP, PWSCF/Espresso, QBox, Socorro, VASP,...
 - Formally N^3 scaling with system size for local functionals
- Key choices:
 - Replace core electrons by an effective potential (pseudopotential)
 - Avoids requirement to represent core electrons in a basis
 - Avoids requirement to orthogonalize to core electrons
 - ➡ Far simpler and cheaper numerics than all electron calculations
 - Represent orbitals/wavefunctions by a Fourier series
 - Easily convergable by increasing the frequency (energy) of the plane wave cutoff

• Problems:

- Sometimes core electrons are required (NMR, Xray spectra...)
- Can be difficult to reproduce the all electron result
- Many practitioners do not check vs all electron results

Example: Bulk TiO₂

- A simple wide band gap oxide.
- Time to converge wavefunctions, total energy, then calculate forces and stress. Finding the ground state structure requires many of these ionic steps.
- Reported performance is believed to be representative, not optimal. 2x improvement achievable, not 10x.
- Details:
 - PBE functional, lattice constants
 - 12 valence electron Ti, 6 electron O PAW potentials
 - 0.00001eV convergence
 - Gamma point sampling only
 - Reasonable choices for other parameters. Publishable.

16 TiO₂ units/48 atoms and charge density

TiO2 Scaling

- <100 atoms are very affordable, may facilitate "design of materials" and "screening" of properties
- Moving from 48 to 1296 atoms (27x) only increases linear distances by 3x, but increases computational cost by 4400x (^2.5 scaling, not the formal cubic cost)
- Parallel scaling is never 100% efficient
- In practice, larger systems take longer to run

Quiz: 1000 atoms Mo bulk

- Time for each electronic iteration (~15 required for electronic convergence)
- I have data from 2006, ran on then jaguar at Oak Ridge
- Q. How much faster can we do the calculation today, using the latest version of jaguar with newer processors and a better interconnect?
 - Code etc. is identical

1000 Mo atoms and charge density

History lesson: Mo scaling

A motivation for alternative methods

- Data shows better scalability and performance but less than 2x improvement over ~6 years. Holds for numerous other runs (bulk, nanoparticles etc.) The speedup is useful but far from revolutionary.
- The cost of the computers has decreased considerably

- The modest improvements motivate methods that:
 - Exploit newer architectures better (CPUs, GPUs, MIC...)
 - Have much better scalability, e.g. are linear scaling, even at the expense of some generality or accuracy
- Some of these methods already exist
- Ideas win out over hardware
- Alternative methods still require good functionals

Summary

- DFT is a formally exact and very powerful approach to electronic structure, but we lack procedures for systematically improving the functionals
- Significant improvements have been made for chemical systems, but for materials problems progress is less clear. Careful testing and "design of experiments" is required
- Developments in computing will motivate changes in implementation, but the central DFT questions will remain

