

An Energy Frontier Research Center Fluid Interface Reactions, Structures and Transport Center,

Oak Ridge National Laboratory

Li-ion energy storage of 2D "MXene" transition metal carbides

Paul R. C. Kent Oak Ridge National Laboratory

http://www.ornl.gov/~pk7

Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center

Acknowledgements

Oak Ridge National Laboratory (theory, INS)

Yu Xie

Alexander I. Kolesnikov

Drexel University (synthesis, XRD, electrochemical)

Michael Naguib Vadym N. Mochalin Yury Gogotsi Michel W. Barsoum

Brookhaven National Laboratory (XAS)

Xiqian Yu Kyung-Wan Nam Xiao-Qing Yang

Computer time: NERSC

Fluid Interface Reactions, Structures and Transport Center,

Oak Ridge National Laboratory

- Background of MAX phases & synthesis of MXenes
- Potential applications
- Key questions
- Methods
- Results
 - Surface structure
 - Surface reactions
 - Li storage capacity
- Conclusions

MAX Phases

- MAX Phases are ternary metal carbides and/or nitrides
- Layered hexagonal structure (P6₃/mmc)
- Composition of

$$M_{n+1}AX_{n}$$
; with $n = 1, 2, 3...$

• > 60 phases identified • Considering solid solutions, $(Ti_{0.5}Nb_{0.5})_2AIC$, $Ti_3AI(C_{0.5}N_{0.5})_2$ there will be 211

413

312

211 Phases	312 Phases	413 Phases	
Ti ₂ CdC, Sc ₂ InC, Ti ₂ AlC, Ti ₂ GaC, Ti ₂ InC, Ti ₂ TIC,	Ti ₃ AIC ₂ ,	Ti ₄ AIN ₃ ,	
V ₂ AIC, V ₂ GaC, Cr ₂ GaC, Ti ₂ AIN, Ti ₂ GaN, Ti ₂ InN,	V ₃ AIC ₂ ,	V ₄ AIC ₃ ,	S
V ₂ GaN, Cr ₂ GaN, Ti ₂ GeC, Ti ₂ SnC, Ti ₂ PbC, V ₂ GeC,	Ti ₃ SiC ₂ ,	Ti ₄ GaC ₃ ,	1
Cr_2AIC , Cr_2GeC , V_2PC , V_2AsC , Ti_2SC , Zr_2InC ,	Ti ₃ GeC ₂ ,	Ti ₄ SiC ₃ ,	(
Zr_2TIC , Nb ₂ AIC, Nb ₂ GaC, Nb ₂ InC, Mo ₂ GaC, Zr_2InN ,	Ti ₃ SnC ₂ ,	Ti ₄ GeC ₃ ,	-
Zr_2IIN , Zr_2SnC , Zr_2PbC , Nb_2SnC , Nb_2PC , Nb_2AsC ,	Ta ₃ AIC ₂ ,	Nb ₄ AIC ₃ ,	'
Zr ₂ SC, Nb ₂ SC, Hf ₂ InC, Hf ₂ TIC, Ta ₂ AlC, Ta ₂ GaC,		Ta ₄ AIC ₃ ,	+
Hf ₂ SnC, Hf ₂ PbC, Hf ₂ SnN, Hf ₂ SC			

Barsoum, M.W. *Progress in Solid State Chemistry* 28 (2000) 201; **many more!** Eklund, P., et al. Thin Solid Films 518(2010) 1851-1878

MAX Phases

Fluid Interface Reactions, Structures and Transport Center,

Oak Ridge National Laboratory

Blocks of "MX" separated by "A" layer

Fluid Interface Reactions, Structures and Transport Center,

Oak Ridge National Laboratory

• "A" layer is *relatively* weakly bonded compared to the "MX"

Synthesis of MXenes

MAX Phase (Ti₃AlC₂)

MAX phase particles samples synthesized

Chemical exfoliation of A-group element (AI) yielded stacked MXene (Ti₃C₂)

Intercalation

Intercalated MXene

Weakening inter-layer Intercalation van der Waals bonds, between the layers increasing c-LP of MXene

Sonication

Single 2D MXene Sheets

Weak sonication brakes inter-layer bonds

- Synthesized MXene flakes (f-MXene) contain many MXene layers which can be further separated into delaminated MXene (d-MXene) with few MXene layers (<10)
- d-MXenes have higher surface areas than f-MXenes
- MXene surfaces are terminated by incomplete or mixed F, O/OH functional groups.

M. Naguib, et al. Adv. Mater. 23, 4248 (2011)

O. Mashtalir, et al. Nature Comm. 4, 1716 (2013)

Preparation of MXene sheets

$Ti_3AlC_2 + HF 50\%$ for 2 hours at room followed by SONICATION:

TEM shows 2D Sheets

EDS shows: Ti, C, O, F

Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253

Numerous MAX phases successfully exfoliated to MXenes

From Ta₄AlC₃

Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331

Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331

M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, "MXenes: A New Family of Two-Dimensional Materials", *Advanced Materials*, **26**, 992-1005 (2014)

10.1002/adma.201304138

MXene electronic structure

Y. Xie and P. R. C. Kent, "Hybrid density functional study of structural and electronic properties of functionalized Tin +1Xn (X=C, N) monolayers"

PRB 87 235441 (2013)

Web of Science search tip Topic search for MXene*

MXenes as Li-ion battery anodes

Li capacities of currently measured MXenes $f-V_2C$ 260 mAhg⁻¹ at 1 C $f-Nb_2C$ 170 mAhg⁻¹ at 1 C $f-Ti_2C$ 110 mAhg⁻¹ at 1 C $f-Ti_3C_2$ 100 mAhg⁻¹ at 1 C $d-Ti_3C_2$ 410 mAhg⁻¹ at 1 C Theoretical max Li capacity of graphite is 372 mAhg⁻¹, but graphite is far from ideal.

O. Mashtalir, et al. Nature Comm. 4, 1716 (2013)

M. Naguib, et al. J. Am. Chem. Soc. 135, 15966 (2013)

Ti₃C₂ as supercapacitor electrode

The capacitance is 73 F/g (190 F/cm³) for KOH. The capacitance is 130 F/g (340 F/cm³) for KOH.

M. Lukatskaya, et al. Science 341, 1502 (2013)

Comparison:

60 - 100 F/cm³ for active graphene

180 F/cm³ for micrometer-thin carbide-derived carbon.

MXenes are promising energy storage materials, even at this early stage

- 1. Understand the origin of the Li capacity in MXenes To predict the best MXene and processing for specific applications
- 2. Explain why Ti-based f-MXenes have lower Li capacity compared to other MXenes? (counterintuitive) e.g. f-Ti2C 110 mAhg⁻¹ vs f-Nb2C 170 mAhg⁻¹
- 3. Explain why d-Ti₃C₂ has a much higher Li capacity than f-Ti₃C₂

Methods

- Computational details
 VASP with PAW potential
 PBE and vDW-DF (optB86) functional
 Packmol for water and HF solution
 AIMD simulations for 15 ps
 Nudged elastic band method for transition state searching
- Experiments
 X-ray diffraction (f-Ti₃C₂, f-Nb₂C)
 High temperature annealing (f-Ti₃C₂, f-Nb₂C)
 Inelastic neutron scattering (f-Nb₂C)
 X-ray adsorption near edge structure (Ti K-edge, f-Ti₃C₂)

Surface structure of MXenes

Fluid Interface Reactions, Structures and Transport Center, *Oak Ridge National Laboratory*

Extensive ab initio molecular dynamics investigations find:

 Water dissociates on MXene surfaces, leaving OH groups
 Surface F can easily be replaced by O in water environment.

MXene surfaces should be terminated mainly by OH groups with some F and O present after HF etching.

Snapshots at 0, 0.5, and 5 ps of AIMD simulations of bare Ti_3C_2 monolayer in 50% HF (a-c), 25% HF (d-f), and water (g-i) solution.

APS March Meeting, 3 March 2014 Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center

Stacking of multilayer MXene

Fluid Interface Reactions, Structures and Transport Center, *Oak Ridge National Laboratory*

The synthesized MXene flakes contain multiple MXene layers and can contain water. By comparing with XRD we can narrow down our structural models.

- Zig-zag packing (Model B) is the stable multilayer structure Stabilized by van der Waals interaction
- We have done extensive comparisons of XRD and predicted lattice constants. Comparison with experimental XRD indicates that water is intercalated into Nb₂C and V₂C but not Ti₂C

AIMD simulations of annealing

Fluid Interface Reactions, Structures and Transport Center, Oak Ridge National Laboratory

We explored changes in surface structure with annealing

Structures after 10 ps of OH terminated Nb_2C . H_2 is formed at the highest temperature.

- AIMD fully corroborated by nudged elastic band calculations of reaction barriers
- Water formation can happen at lower temperature than H₂ formation
- AIMD simulations reveal trends in required annealing temperatures
- Ti-based MXenes require higher temperature for water formation than other MXenes (Nb₂C and V₂C)

Experimental verification

- The *c* lattice paramters of Ti_3C_2 reduced from 19.95 to 19.37 Å after annealing (little water removal), while that of Nb₂C reduced from 22.34 to 15.85 Å (significant water removal)
- INS confirms that all of the H₂O/OH are gone
- Consistent with predictions of water intercalation

Li adsorption and storage of OH terminated MXenes

Li is weakly adsorbed. Calculated Li capacities are much lower than experimental results. OH termination is not desirable for Li adsorption.

Li adsorption and storage of OH terminated MXenes

Li is weakly adsorbed. Calculated Li capacities are much lower than experimental results. OH termination is not desirable for Li adsorption.

Li adsorption and storage of OH terminated MXenes

TABLE III. Calculated Li adsorption energy of OH terminated MXenes with vdW–DF methods, and theoretical Li capacities, compared with experimental results.

	E (-17)	${ m F}~({ m mhA^{-1}/g})$		
	E_{ad} (eV)	Theo.	Exp.	r (Exp./Theo.)
$\rm Ti_2C(OH)_2$	0.065	95	110	1.16
$\rm V_2C(OH)_2$	-0.077	91	260	2.86
$\rm Nb_2C(OH)_2$	0.170	58	170	2.93
$\rm Ti_3C_2(OH)_2$	0.171	67	100 (410)	1.49 (6.12)

Li is weakly adsorbed. Calculated Li capacities are much lower than experimental results. OH termination is not desirable for Li adsorption.

Li adsorption and storage of O terminated MXenes

- O terminated MXenes can adsorb 2 Li directly per formula unit (same as bare MXenes)
- O termination is more preferred for Li storage and gives reasonable capacities
- For d-Ti3C2, the Li experimental capacity can't be purely from the single layer of Li (!!)
- (Bare MXenes, not shown, display intermediate capacities)

Li adsorption and storage of O terminated MXenes

- O terminated MXenes can adsorb 2 Li directly per formula unit (same as bare MXenes)
- O termination is more preferred for Li storage and gives reasonable capacities
- For d-Ti3C2, the Li experimental capacity can't be purely from the single layer of Li (!!) Discrepancy too large to be due to DFT errors

Li adsorption and storage of MXenes

Li adsorption and storage of O terminated MXenes

MXenes.

TABLE IV. Calculated vDW–DF Li adsorption energy and Li ion storage capacity of O terminated

	E_{ad} (eV)	${ m F}~({ m mhA}^{-1}/{ m g})$				
		Theo.	Exp.	r (Exp./Theo.)	OCV	
${\rm Ti}_2{\rm CO}_2$	-1.364	383	110	0.29	>1	
$V_2 CO_2$	-1.539	367	260	0.71	1.5	
$\rm Nb_2CO_2$	-1.019	233	170	0.73	<1	
$\rm Ti_3C_2O_2$	-1.404	268	100 (410)	0.37(1.53)	>1	

- O terminated MXenes can adsorb 2 Li directly per formula unit (same as bare MXenes)
- O termination is more preferred for Li storage and gives reasonable capacities
- For d-Ti3C2, the Li experimental capacity can't be purely from the single layer of Li (!!)

Obtaining O terminations by reaction of OH groups

Analysis of simple reactions find H2O and H2 formation is feasible. Ti-based materials show the highest reaction barriers... potentially the cause of the lower experimental capacities?

 $M_{n+1}X_n(OH)_2 + 2 Li \rightarrow M_{n+1}X_nO_2Li_2 + H_2$

 $M_{n+1}X_n(OH)_2 + 2 Li \rightarrow M_{n+1}X_nOLi_2 + H_2O$

X-ray adsorption spectroscopy measurements of first lithiation/delithiation cycle of f-Ti₃C₂

- Ti⁴⁺ reduced to Ti³⁺ upon lithiation.
- No additional conversion reactions
- Two distinct region upon lithiation/delithiation.
- Li capacity reaches 262 mAhg⁻¹ at the end of region I, which is 1.95 Li adsorbed per Ti₃C₂O₂ unit. Gives confidence in DFT predictions.
- 1.4 extra Li need for the capacity from region II.
- The flat XANES of region II and III suggests no direct interaction between Ti and extra Li.
- The irreversible Li capacity may due to the reduced Li diffusion by reaction products (H₂, H₂O, SEI, etc.)

An additional mechanism for Li storage is needed for region II Our proposal: extra Li may be stored on top of Ti₃C₂O₂Li₂

Adsorption of extra Li layer

Fluid Interface Reactions, Structures and Transport Center, Oak Ridge National Laboratory

Li adsorption energy as a function of extra Li layers. We used isolated Li atom as the reference. The cohesive energy of bulk Li is -1.65 eV/atom.

Mechanism is similar to what has been suggested for pristine graphene and some related nanomaterials, a tendency to form a 3D structure

A large space is needed for the extra Li layer. $F-Ti_3C_2$ (20 m²/g), d-Ti₃C₂ (100 m²/g).

Electron localization function of Li layers

Single Li layer

Two Li layers

- Additional Li displays distinct bonding to first Li layer
- With the additional Li layers, the electrons are localized in the inter layer spaces between Li layers and between outermost Li atoms
- Little change around Ti atoms (consistent with XAS)
- The negative charged electron pockets may screen the Coulumb repulsion between positive Li ions to stabilize the extra Li layers.

Fluid Interface Reactions, Structures and Transport Center, *Oak Ridge National Laboratory*

APS March Meeting, 3 March 2014 Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center

Goals

1. Understand the origin of the Li capacity in MXenes A single adsorbed Li layer explains much of the observed capacity.

For high capacity, favor oxygen terminated MXenes and reactions/processing that facilitate oxygen termination.

2. Explain why Ti-based f-MXenes have lower Li capacity compared to other MXenes? (counterintuitive) e.g. f-Ti2C 110 mAhg⁻¹ vs f-Nb2C 170 mAhg⁻¹

Ease of surface chemistry varies with MXene. Oxygen termination is preferred.

3. Explain why d-Ti₃C₂ has a much higher Li capacity than f-Ti₃C₂ *Additional Li layers*

Prediction of other MXenes

Rules for high capacity:

- 1. High intrinsic capacity for single layer Li absorbed on oxidized MXene
- 2. Low energy barriers to react away -OH groups from synthesis
- 3. Delamination

e.g. We calculate capacities of not-yet synthesized oxidized Sc₂C ~400 mAhg⁻¹ and Cr₂C ~360 mAhg⁻¹

Due to greater reaction barriers, Sc₂C will likely have a lower Li capacity than Cr₂C, while Cr₂C may posses an Li capacity rivaling or exceeding V₂C (~260 mAhg⁻¹) Delamination will further increase capacity

Fluid Interface Reactions, Structures and Transport Center, Oak Ridge National Laboratory

Conclusions

- MXenes are a new and extensive family of 2D materials that are promising for applications.
- Sample preparation and surface reactions can significantly influence the energy capacity.
- O termination is preferred for Li storage.
- To explain the high measured capacities of delaminated MXenes, we propose that additional Li capacity may originate from extra Li layers.
- Lots of opportunity to further optimize MXenes.

More info: kentpr@ornl.gov