Properties of Liquid Electrolytes for Li-ion Battery Applications from First Principles Molecular Dynamics

Spontaneous solvation of LiPF₆ in Ethylene-Carbonate

Paul R. C. Kent Panchapakesan Ganesh Deen Jiang Oak Ridge National Laboratory

Support: FIRST EFRC, US DOE, Office of Science, BES award ERKCC61. Computers: NERSC

One of our long term goals

Understand and optimize the structure and properties of solid-electrolyte interfaces (SEI)

SEI formed through reaction + breakdown of electrolyte at electrode and in presence of Li salt

ational Laborator

Short term goal

Study properties of Li salt in Ethylene and Propylene carbonates

Method

First principles molecular dynamics

Most accurate method for reactions in solution and at interfaces; Will eventually be required for SEI components

Can be used to validate faster/cheaper/less accurate approaches (LCAO; tight binding; reactive classical; classical)

Supercells with 27 EC/PC molecules, 1 LiPF₆ (~0.5 M)

Born-Oppenheimer MD, 0.5fs timestep, up to 25ps trajectory

Plane wave PAW pseudopotential method

PBE functional. Tested Grimme dispersion "PBE-D2"

We contrast Ethylene & Proplyene carbonates

Structures are similar, differing only by an additional methyl group on PC

EC: C₃H₄O₃

PC: C₄H₆O₃

Ethylene carbonate C₃H₄O₃

Li Partial radial distribution function and coordination number

1st Li solvation shell 4 EC or PC molecules (neutrons: 4.5 at 1.5M, classical: 3.6 EC 298K)

Li-O (carbonyl) distance 1.92/1.94 A in EC/PC @ 310K (neutrons: 2.04 A in PC)

No F⁻ in 1st coordination shell consistent with neutron scattering (Kameda JPCB 2007 111 6104) & in contrast to classical MD (Borodin JPCB 2006 110 4974) AK

Van der Waals tests find similar results

Li diffusivity

Computed from meansquare displacements

Very reasonable agreement with experiment despite short simulation times

Li in EC Calc. ~1.0x10⁻⁹ m²/s (310,400K) Expt. ~0.62x10⁻⁹ m²/s (298K) for 0.5M LiPF₆ via NMR measurements Yang J. Mol. Liq. (2010) 154 131

Li in PC Calc. ~0.7 x10⁻⁹ m²/s (310K) Calc. ~3.7x10⁻⁹ m²/s (400K) Expt. ~0.4x10⁻⁹ m²/s (298K) Nishida ECS Trans. (2008) 6 1

Rapid solvation of LiPF₆ in EC

Li solvation significantly more energetically favourable in EC than PC at 310K

Simulations with lithiated carbon anode

Li poor

Li rich

- Many configuration necessary for statistics, but...
- Reductive components already seen after few ps
 c.f. K. Leung & J. L. Budzien PCCP (2010) 12 6583
- Li poor OH terminated edges display excluded volume
- Li rich OH terminated edge appear to show ordering of EC

P. Ganesh et al. JPCB (ASAP 9 March 2011) 10.1021/jp2003529

- Additional structure, dynamics analysis, comparison with experimental spectroscopies in paper
- Overall good agreement with available experiment
- PBE DFT gives accurate results:
 - More accurate than existing empirically fit classical models
 - 1st neighbour shell possibly too tight
- Promising for application to electrode interface models

ornl.gov/~pk7 pk7@ornl.gov

