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ABSTRACT 
 
Web-based social networks, online personal profiles, 
keyword tagging, and online bookmarking are staples of 
Web 2.0-style applications.  In this paper we report our 
investigation and implementation of these capabilities as 
a means for creating communities of like-minded faculty 
and researchers, particularly at minority serving 
institutions.  Our motivating problem is to provide 
outreach tools that broaden the participation of these 
groups in funded research activities, particularly in 
cyberinfrastructure and e-Science.   In this paper, we 
discuss the system design, implementation, social 
network seeding, and portal capabilities.  Underlying our 
system, and folksonomy systems generally, is a graph-
based data model that links external URLs, system users, 
and descriptive tags.  We conclude with a survey of the 
applicability of clustering and other data mining 
techniques to these folksonomy graphs.   
 
 
KEYWORDS: Web 2.0, Social Networks, 
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1.  INTRODUCTION 

The proliferation of online communities and social 
networks such as Facebook, LinkedIn and many others, 
with memberships numbering in the millions, has 
reinvigorated the Web by making it a participatory entity 
with blurred lines between users and developers.  These 
social networking systems are part of a larger activity that 
is collectively labeled “Web 2.0” [1].   Although Web 2.0 
is an uncoordinated activity when compared to Web 
Services or Grid computing, its disparate activities 
collectively define a comprehensive distributed 
computing approach [2][3].  As such, it is challenging 
many of the architectural foundations of 
cyberinfrastructure and e-Science.  

This paper describes our work to build a social 
networking portal that is geared toward enabling faculty 

and researchers to find both useful online resources and 
also potential collaborators on future research projects. 
We are particularly interested in helping researchers at 
Minority Serving Institutions (MSIs) connect with each 
other and with the education, outreach, and training 
services that are designed to serve them, expanding their 
participation in cyberinfrastructure research efforts.  This 
portal is a development activity of the Minority Serving 
Institution-Cyberinfrastructure Empowerment Coalition 
(MSI-CIEC). The portal’s home page view is shown in 
Figure 1.  

The MSI-CIEC social networking Web portal combines 
social bookmarking and tagging with online curricula 
vitae profiles.  The display shows the logged-in user’s tag 
cloud (“My Tags” on left), taggable RSS feeds (center), 
and tag clouds of all users (“Favorite Tags” and “Recent 
Tags” on the right).  Users may search tags (including 
researcher names, NSF directorates, and TeraGrid 
allocations) using the center text field. 

 

Figure 1. The MSI-CIEC Social Networking Web 
Portal. 

Online bookmarking was pioneered by such sites as 
del.icio.us, Connotea, Digg, Slashdot, and CiteULike, 



 

among others (for a summary, see [4]).  These sites vary 
in purpose.  General-purpose bookmarking sites such as 
del.icio.us can bookmark any link and have a time-
independent view of the URLs.  Digg and Slashdot, on 
the other hand, are geared toward tagging and rating 
news links and more ephemeral subjects.  Connotea and 
CiteULike both cater to academic citation links and 
provide additional tools (such as automatic metadata fill-
in with a provided Digital Object Identifier).  In related 
work, our lab’s IDIOM project [5] seeks to couple 
tagging of academic material with scholarly search 
engines such as Google Scholar and Microsoft Live 
Academic.  

Apart from their utility, social bookmarking and tagging 
are interesting for Computer Science research because 
they create usage-driven descriptions of URLs (and 
potentially any URIs).  Such descriptions are known as 
folksomomies and superficially resemble more structured 
ontology approaches pursued by the Semantic Web 
activity.  As we discuss below, folksonomies are in fact 
graphs (as are RDF and OWL-represented ontologies).  
Unlike ontologies, folksonomies lack the expression of 
logical associations in the arcs of the graph.  This does 
not allow, for example, logical inferences to be made in 
the relationships in the graphs (as is the goal of Semantic 
Web ontologies), but it does indicate that a wealth of data 
mining algorithms may be applied to discover interesting 
emergent relationships in the data in place of designed-in 
and derived relationships.  We conclude with a discussion 
our initial survey of these problems. 

2. MSI-CIEC NETWORKING PORTAL 
FEATURES 

Our portal is designed to support academic user 
communities through a combination of online user 
profiles and shared online bookmarks that are described 
with keyword tags. The system capabilities include the 
following:  

• Users can create public profiles of themselves 
to describe their research interests, provide their 
publication lists, academic and professional 
training, and other curricula vitae. 

• Profiles are also decorated with the user’s tag 
cloud (see Figure 1).  

• By importing RSS feeds, users can further 
enhance their profiles with other information, 
such as Connotea publication feeds, SciVee 
videos, etc. 

• Users can bookmark any URL during normal 
browsing and have it stored in the MSI-CIEC 
portal database.   Users describe bookmarks 
with one or more keyword tags. 

• Users can search their own bookmarks by 
navigating tags, and they can also search 
publicly tagged URLs from other users. 

• Researchers can also “click tag” featured RSS 
feeds, such as NSF Recently Announced 
Funding Opportunities [6].  Click-tagging 
allows a user to label entries in the feed with 
“interesting” or “uninteresting” tags.  Users can 
later view their own and public “interested” 
tags.  

• Users can search award funding and project 
data.  We currently import data and auto-
generate tags from the NSF’s awards database 
and the NSF TeraGrid’s allocations database.  
These tags can be searched and navigated just 
as normal, user-generated tags. 

Social networking sites depend upon a minimal number 
of users and richness of data to be self-sustaining, so our 
initial capabilities have been chosen to support 
uncorrelated usage.  Bookmarking, NSF award 
navigation, and click-tagging are all applications that are 
independent of the number of users. The social 
networking properties (such as joining groups, finding 
most interesting tags, and viewing other users’ profiles) 
are emergent capabilities of the system that become 
richer as more people use the system. We now review 
these capabilities in more detail through example usage 
scenarios in the following section. 

3. USAGE SCENARIOS 

3.1. Creating an Online Profile 

As described above, one of the portal’s primary functions 
is to provide online, customizable and extensible 
curricula vitae for users.  In addition, users with previous 
NSF awards have automatically generated profile stubs 
that they can enhance.   Figures 2-4 display the sections 
of this form.  Figure 2 shows a display of basic portal 
information (the user’s name and profile tags).  Forms for 
updating the user’s professional preparation are shown in 
Figure 3.   

Figure 4 shows the user’s network of friends, list of NSF 
collaborators, and list of NSF awards.  Award and 
collaborator information sections are automatically 
created from publicly available data, harvested as 
described below.  Although we have concentrated on 
NSF data sources in our implementation, we believe the 
approach can be adapted to other, similar data sources. 

As we discuss below, these profiles are discoverable 
through tag navigation.   To illustrate this from the profile 
point of view, we can see in Figure 2 that the user has a 
tag cloud resulting from his interactions with the system.  



 

The tags such as “Grids” can be used by others while 
searching and walking the tag graphs underlying the 
display in Figure 1.  These will eventually take users to 
profile pages such as Figures 2-4.   

 

 

 

Figure 2.  Profile View for a User. 

Logged-in users can edit basic user information about 
themselves (Figure 2).  Autogenerated information may 
also be provided.  “Profile Tags” section shows the 
results of a user’s interaction with the system. 

 

 

Figure 3.  Additional Profile Information. 

Additional forms allow users to describe professional 
preparation and research (Figure 3). 

 

Figure 4. Social Networking and Research Tags. 

Social networking information, including lists of friends 
(links to other profiles), collaborators, and funded 
projects is displayed in Figure 4. Users can decorate their 
profiles with arbitrary RSS feeds such as Connotea 
publication lists. 

3.2. Tagging a URL 

As shown in Figure 1, users’ profiles include their tag 
clouds.  These are keyword links to external URLs that a 
user has found useful or interesting.   Bookmarking a link 
is done in an unobtrusive manner using a small 
JavaScript bookmarklet that a user drags into the 
bookmark toolbar (see Figure 5). A logged-in user can 
drag the bookmarklet into the bookmark toolbar. 

 

Figure 5. Enabling Bookmarking During Normal 
Browsing. 

During usual browsing, a user can click this bookmarklet 
to post the URL to the portal, along with descriptive tags 
and keywords.  This information is supplied through a 
popup window. See Figure 6. 



 

 

 
Figure 6.  Tagging a New URL. 

By clicking the portal bookmarklet, a user can tag a 
particular URL while browsing.  The user specifies tag 
keywords through a popup window (lower right).  These 
are used to generate the tag clouds in Figure 1. 

3.3. Click Tagging a Featured RSS Feed 

Although the portal is can be used to bookmark any URL, 
it is intended to foster research collaborations.  To 
encourage this, we provide relevant RSS feed displays 
through the portal, such as recent funding announcements 
from the NSF (Figure 7).  

We reformat RSS feeds to allow a user to quickly tag the 
individual feed entries as "interesting" or "uninteresting".  
These tags will appear in the user's tag cloud.  The list of 
all such feeds tagged as "interesting" are also available 
from the system tag cloud, such as shown in Figure 8. 

This approach can be used to convert any RSS feed. 
Unfortunately, not all information on funding is currently 
available in RSS or Atom syndication formats: grants.gov 
provides a prominent example.  We can convert these 
sites into RSS feeds using tools such as OpenKapow’s 
RoboMaker (see http://openkapow.com/).  

 
Figure 7.  Click Tagging RSS Feeds. 

Portal displays of RSS feeds may be “click tagged” as 
“interesting” or “uninteresting”.  Tagged material will be 
displayed in tag clouds using these keywords. 

 
Figure 8 Recent Funding Announcements Tagged as 

“Interesting”.  

Users can see all recent funding announcements that have 
been tagged as interesting by clicking the “Interested” tag 
in either the “Favorite Tags” or “Recent Tags” clouds on 
the left. 

3.4. Searching NSF Awards 

As described below, we populated the system by 
harvesting publicly available data from sources include 
the NSF awards database and the TeraGrid allocations 
database.  This information results in several 
automatically generated tags that are summarized in 
Table 2.     

 

Figure 9. Cloud of All NSF Namespace Tags. 

There are several pathways through this data in the 
portal.  One option is for the user to click the “NSF Tag 
Cloud” link (left side of Figure 1).   This will display the 
cloud of NSF-namespaced tags in the central display 
(Figure 9).   

 
Figure 10. A Tag Cloud of Users Funded Through 



 

NSF ENG. 

“Small”, “medium”, and “large” tags refer to the size of 
the grant.  Years (“2007”, “2008”, etc) refer to project 
end dates. Other tags (“cse”, “eng”, etc) refer to NSF 
divisions or directorates.  Clicking one of these (“eng”) 
produces a cloud of researchers funded through this 
division (Figure 10). 

 

Figure 11. Tag Cloud and Funded Projects for the 
User "Wei Li". 

By selecting a name from the above cloud (“Wei Li”), a 
user can see this researcher’s tag cloud and list of funded 
projects.  The funded project links are URLs to the 
appropriate NSF award abstract page.  

4. IMPLEMENTATION DETAILS 

4.1. User Interface Design 

The blueprint of our design was distilled from use case 
scenarios acquired through interviews and discussions 
with MSI-CIEC team members.  In the design phase, 
content analysis was used to do content mapping where 
content chunks are formed and then mapped onto the 
different positions on the web pages.  

As shown in Figure 1, the portal is divided into different 
content components. This has helped in the design and 
development of the wire-frame. The components are 
divided into 4 content areas: 

• Header: This contains the logo, title info of the 
portal, and the login area. The login area uses an 
Ajax updater library that gives a slide-down effect. 

• Footer: this contains redundant navigational links 
and funding agency acknowledgments.  

• Content: The center is the main content area where 
most of the content is dynamically generated using 
Ajax libraries imported from Scriptaculous (http:// 
script.aculo.us). Some example content chunks are 
NSF Tag Clouds, User Tag Clouds, Profile 
Information, Search Results, RSS Feeds, etc. 

• Navigation: The navigational structure is composed 
of Global, Sub-Global, and contextual navigation. 
This type of navigation is often described as an 
embedded navigation system. Such navigation helps 
users in understanding where they are and where 
they can go on a website. The global navigation in 
this case consists of global links, namely Home, 
News, Contact, Help, and About. The sub-global 
navigation on the left consists of a drop down menu 
for My Tags and My Account. The right navigational 
structure consists of modules that are Tag Clouds. 
There are four different tag cloud structures: 

o User Tag Cloud: containing tags tagged 
by real users 

o NSF Tag Cloud: containing self-generated 
tags imported from NSF awards.  

o Favorite Tags: containing the list of 
favorite tags of all users. 

o Recent Tags: containing tags recently 
generated by all users. 

We implemented the portal with numerous third party 
tools.  These are summarized in Table 1.  

Table 1. Third party tools and technologies used in 
the portal. 

Tools / Technologies Uses 
PHP / PEAR Backend database 

programming, function calls, 
creating rss feeds etc. 

Scriptaculous 
Javascript Libraries 

Animated visual effects such as 
drop-downs, draggable and 
droppable menus, etc. 

Adobe Photoshop,  
Illustrator 

Graphic design for the portal, 
wire frames 

Adobe Dreamweaver HTML/PHP/CSS Editor 
MySQL 
/phpmyadmin utility 

Database creation, updating etc. 

Google Analytics Analyze traffic patterns, finding 
sources where the users come 
from etc. 

 
4.2. Grant Information Harvesting 

The NSF maintains a publicly searchable online database 
of awards (see http://nsf.gov/awardsearch/).  The online 
forms use HTTP GET URLs and support several output 



 

formats (including XML, text with comma-separated 
values, and Microsoft Excel spreadsheets) in addition to 
HTML.  This provides us with a REST-like (if 
undocumented) programming interface that we can use 
for development.  Information retrieved in this fashion 
includes the following fields: 

• Project name, 
• Award size,  
• Organization,  
• Directorate, and  
• Co-investigators. 

 
In order to download and incorporate this data into our 
portal and our tag data model, we decided to use a 
crawling approach seeded with researcher names.  The 
co-investigators returned in the HTTP response message 
were used in the next round of searches.  Co-investigators 
were then harvested from those projects and were added 
to a queue where the same information was downloaded 
for them.  We have currently harvested over 8,600 
researchers in this fashion. 

We next must convert this information into tags.  The 
NSF query responses are obviously tabular data (see list 
above for column headings), so these can be converted 
into tag families, or namespace groups.  We convert the 
individual table entries (such as award size and date for a 
particular entry) into tags.  For entries with ranges of 
values (award sizes, for example), we have defined tags 
(i.e., small, medium, and large) with range values.  These 
are summarized in Table 2.  

Tags gleaned in this way are prepended with a namespace 
value (nsf.*). This prevents tag name collisions with 
user-supplied tags (i.e. “small” may be a user-supplied 
tag irrelevant to award sizes).  It also provides us with a 
simple organizational label that can be used for 
separating out the NSF tags into separate clouds.   

Table 2. Harvested NSF award and allocation data 
are converted into tags.  We use namespaces to 

distinguish these tags from user-supplied keywords.  
Namespaces are not displayed by the portal (i.e. 

“nsf.date.2008” is displayed as “2008” in a tag cloud.) 

Tag Format Tag Description Example Tag 

nsf.investigator. 
 

The name of an 
investigator of this 
project 

nsf.investigator.first
name.geoffery 
nsf.investigator.lastn
ame.fox 

nsf.date. 
 

End year of this 
project 

nsf.date.2008 
 

nsf.number. Award number nsf.number.0407040 

nsf.award Award size nsf.award.medium 
nsf.organization
. 

Associated NSF 
organization 

nsf.organization.ast 

nsf.directorate. 
 

Associated NSF 
directorate 

nsf.directorate.mps 
 

nsf.tghours. 
 

Allocated teragrid 
hours (in a log10 
format) 

nsf.tghours.log6 
 

 

5. TAGGING AND FOLKSONOMIES 

Development of the MSI-CIEC Networking Portal is 
motivated by a real application, but it also provides us 
with a test bed for investigating interesting computer 
science research issues, particularly the application of 
data mining and clustering techniques to folksonomies.    

5.1. Exploring Communities in Collaborative 
Tagging Systems 

Collaborative tagging systems have been drawing wide 
attention as an open medium to freely share information 
on the Internet. The key aspect of such systems is that 
objects such as URLs and URIs can be simply tagged by 
a list of keywords provided by any user. Due to its 
semantic-free format, collaborative tagging systems have 
intrinsically a low barrier to promote a user’s 
participation.  

Community activities are also an important aspect in 
most collaborative tagging systems. A user may want to 
see other people who have tagged on the same object that 
he or she tagged. A user may want to find a group of 
people who might have the same interest and look at their 
bookmarks or resources.  To help such users to discover 
unexposed communities and explore them efficiently in 
the system, we need to develop and apply data mining 
algorithms. In the following, we describe the model of 
tagging system and discuss possible solutions for 
supporting community exploring.  

5.2. Models of Collaborative Tagging System 

The main elements of collaborative tagging systems 
consist of tags, resources, and users. In most scenarios of 
using collaborative tagging systems, a user uses tags – 
which can be keywords, terms, or neologisms – to tag a 
resource that is normally an URL but generally can 
include an URI. We can represent those tagging activities 
as a tuple consisting of a user, a set of tags, and a 
resource.  Alternatively, we can use graphical 
connections in a tripartite graph where links are drawn 
between three domains of users, tags, and resources (see 



 

Figure 12) [7]. In general, the purpose of such systems is 
to find specific resources tagged collaboratively by 
multiple users and retrieve information about resources or 
users, entangled in the mesh of tags and resources by 
using query tags. 

 

 
Figure 12. Tripartite Graph of a Tagging System. 

To build a system for this purpose, we can use two 
different models: a vector space model and a graph 
model. Although the two models can be convertible to 
each other in general, they are distinct in their ways of 
representations and usages. While the vector space model 
uses vectors in an orthogonal basis tag space, the graph 
model exploits graph structures of three elements — tags, 
users, and resources. The vector space model considers 
the frequencies of tag occurrences for searching, but the 
graph model focuses on graphical characteristics such as 
paths and the degree of connectivity between nodes. The 
vector space model has been widely developed and 
applied in many different ways in the field of 
conventional information retrieval for its simplicity, and 
the graph model has become popular in the areas such as 
the Internet search engines and social network analysis. 

More precisely, in the vector space model, a resource (or 
a user)1 is represented as a vector of tag occurrences in a 
tag space. For example, a resource tagged by 2 
occurrences of tag1 and 1 occurrence of tag2 can be 
expressed as a vector <2, 1>. A dimension is often used 
to describe the size of a tag space, which equals the 
number of total tags used in the system. Thus, <2, 1> is a 
2 dimensional vector.  

In reality, the dimension of these tag vector spaces is 
huge. Connotea and del.icio.us have tens of thousands of 
dimensions, and the dimension of our MIS-CIEC portal is 
about 180. In the vector space model, queries are also 
given as tag vectors in the same space and then searching 
is a process to find the exact or, more likely, the most 
similar vectors.  

In practice, since searching a space of tens of thousands 

 
 
 

dimension is a daunting task, we can use dimension 
reduction schemes for decreasing dimensions to search 
by removing noisy and unrelated tags. Latent Semantic 
Analysis (LSA) and Principal Component Analysis 
(PCA) are the well-known algorithms for this purpose. 
We can use the vector space model for finding specific 
frequency patterns. For example, finding a group of 
people who share specific set of tags of interest, finding a 
person whose tags are similar with mine, and so on. 

 

 
(a) 

 
 

 
(b) 

Figure 13. (a) A Tag Graph Example and (b) a Part of 
the Tag Graph of MIS-CIEC Portal.  



 

As shown in Figure 13, tags, resources (URLs), and users 
are represented as a square, a circle, and a box 
respectively. Figure 13 (b) shows only resource-tag 
graphs and each independent network (connected graph) 
is assigned to a unique color. 

In contrast, the graph model takes advantage of graph 
structural relationships between tags, resources, and 
users. Those relationships can be depicted in a graph, 
which is known as a tag graph, where each tag, a resource 
and a user are represented as a node and a relationship 
between them as an edge (see Figure 13(a)). Tag graphs 
of real systems are more complicated, consisting of 
thousands of thousands nodes. A part of the tag graph of 
our MSI-CIEC portal is shown in Figure 13(b).  

Table 3. A summary of potential questions for 
discovering communities in a collaborative tagging 

system and the appropriate algorithm. 

 

In this model, graph properties such as connectivity, hop 
distance, and strength are the important figures to 
measure, and thus searching is a task to find specific 
properties in the graph. For example, to find strong 
relationships between two nodes is to identify a path that 
consists of a high degree of connectivity but with short 
hop distance. In this way, we can use the graph model to 
investigate more sophisticated relationships between tags, 
resources, and users. Examples of complicated questions 
we can have include finding a person who is related with 
my friend, discovering a group of people who is working 
on the same topic, and so on. 

5.3. Discovering Communities 

Tagging a resource that has already tagged by other 

users, watching other user’s tagging activities, and 
expressing one’s interests though tags can be the most 
common examples of social activities in a network. Now 
the most of collaborative tagging systems explicitly 
support community activities by enabling users to create 
a new community or to join other communities of 
interest. By doing so, users can actively collect more 
valuable information by contacting other people in the 
net who share the same interest of the users.  

In this situation, finding a group of people who are 
working on the same topics or interests, which we call 
discovering a community, will be an inevitable task in the 
systems. For example, users may ask to the system; 
“Who is sharing a similar interest with me?”, “Who is the 
most influential in a community?”, or “What kind of 
recommendations can I obtain?” A list of feasible 
questions users might ask and the appropriate technique 
is summarized in Table 3. Considering the size of such 
networks, solutions for those problems are not trivial and 
will require efficient, parallel algorithms.  

Depending on the models discussed in the previous 
section, we can classify potential solutions into two main 
categories: frequency analysis that rely on the vector 
space model and structural analysis that are based on the 
graph model. 

5.4. Frequency Analysis and Clustering  

Based on the vector space model, the frequency analysis 
can be performed over the frequencies of tag occurrences 
in a system. In this analysis, the more frequently used 
tags, the more referenced resources, and more actively 
involved users are considered to be more significant and 
thus have stronger impacts in a system.  

Preparing data is relatively simple: one makes a 
frequency matrix by counting the number of tag 
occurrences with respect to each resource or each user. 
Instead of simple counting, more sophisticated methods, 
such as entropy or scores, can be used. Finding specific 
patterns means matching a target vector in the frequency 
matrix. Latent Semantic Analysis is one of the most 
popular algorithms among many conventional algorithms 
used in the field of information retrieval [9] for these 
types of problems.  

Latent Semantic Analysis (LSA) has been developed 
since 1990 for the use of information retrieval [8]. The 
key ability of LSA is to eliminate statistically unrelated 
tags from a frequency matrix, which is also known as 
dimension reduction, and enable users to compare them 
with only the most significant components. As a result, 
LSA helps users to recover “latent” core tags obscured by 
“noisy” (or the less significant) tags and thus can give 

Questions Technology or 
Algorithm 

Who is sharing a similar 
interest with me? 

LSA, TagRank, Graph-
based algorithm, 
Clustering 

Which group of people is 
working on a specific topic? 

LSA, Graph-based 
algorithm 

What are the characteristics 
of a community group? 

Clustering algorithm, 
Graph-based algorithm 

Who is the most influential in 
a community? 

LSA, TagRank 

What kind of 
recommendations can I 
obtain?  

TagRank, Graph-based 
algorithms 

How similar is two different 
communities? 

Graph-based algorithm 

What is the most outstanding 
trend? 

TagRank 



 

more insightful perspectives regardless of presence of 
noises.  

Clustering is another prominent method used for 
frequency analysis. Discovering communities of similar 
interests can be performed by identifying clusters of users 
based on their tag patterns. Well-known clustering 
algorithms can be applied for this purpose. Hierarchical 
clustering [11], k-means clustering [12], and 
deterministic annealing algorithms [13] are good 
candidates. Other clustering algorithms can be found in 
[14].  

When selecting algorithms, performance is also a critical 
issue in the frequency analysis since the dimension of 
frequency matrix will exceed tens of thousands or even 
more. Indeed, a few clustering algorithms have been 
designed to deal with high-dimensional problems by 
exploiting parallelism. For example, parallel hierarchical 
clustering [15] and parallel k-means method [16] can be 
found in literature. However, although the most recent 
advent of multi-core technologies now supports intra-
chip parallelisms, very little research has been done so far 
[17][18] on parallelizing and optimizing these algorithms 
on these new chip architectures. More performance gains 
can be obtained in the frequency analysis by adapting 
those algorithms – LSA and various clustering algorithms 
– to the multi-core environments. 

5.5. Structural Analysis 

In contrast to frequency analysis, which uses tag 
frequencies in a vector space, the structural analysis 
considers the tagging activities as a graph, described in 
the graph model, and utilizes graph-structural properties 
in the tag graph for discovering communities in a 
collaborative tagging system. Compared with the data 
used in the frequency analysis (i.e., frequency matrix), 
the representation of data in a graph structure is more 
intuitive and human-understandable. For this reason, 
structural analysis may help users to find other 
information that is not obtainable when performing the 
frequency analysis. Example properties we may want to 
find out are connectivity, connection distances between 
users, size of communities, and the degree of strength of 
a connection.   

In the literature, many graph-based algorithms can be 
found for the structural analysis. Among them, FolkRank 
[10] and graph-based clustering algorithms, as shown in 
[19][20][21], are applicable in our purpose.  

The concept of FolkRank algorithm, which is a variant of 
well-known PageRank algorithm of Google, is to assign 
each node – which is a tag, a user, or a resource – a 
system-wide numeric score, also known as a rank, by 

measuring contributions or a degree of importance in 
system. To obtain such rank scores, the algorithm starts 
with random seeds of nodes and recursively follows sub-
graphs by utilizing the graph structures of tagging. This 
process is iteratively repeated until the scores converge to 
a certain threshold.  

Like other clustering algorithms used in the frequency 
analysis, graph-based clustering algorithms, as shown in 
[19][20][21], can be used for identify or searching similar 
group of people in a system. Similarly, there is very little 
study in literature on parallel graph-based clustering 
algorithms working on multi-core environments, so these 
remain open and important problems. 

6. SUMMARY AND FUTURE WORK 

This paper describes the design and implementation of 
the MSI-CIEC Networking Portal, a Web 2.0-style 
tagging and social network style application.    This work 
is motivated by the need to support social networks of 
researchers, particularly at minority serving institutions. 

In addition to this practical motivation, we hope also to 
use the portal as a laboratory for core computer science 
work on social network analysis.  As described in Section 
V, we are researching the application of various 
techniques for clustering and mining the data we are 
harvesting.   Although some form of this is quite familiar 
from many social Web sites, we hope to put the 
techniques on a firm, open academic footing, avoiding 
proprietary and ad hoc algorithms.  

The key problem with most social network applications is 
the lack of interoperability, but this fortunately is 
beginning to change.  The major social network 
activities, Facebook and the Google-led Open Social 
consortium, are both providing programming APIs that 
allow developers to embed applications in existing social 
networks and, conversely, allow embedding social 
network tools into other Web sites.  It will be crucial for 
our project, in the next phase, to establish interoperability 
with these social networking tools. 
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