
SensorNet Security Implementation

SensorNet Security Implementation

James A. Rome

 April 20, 2005

Table of Contents

Introduction

Why are certificates the best SensorNet security solution?

Overview of the security infrastructure

Encryption

The SensorNet Policy Server

Functional Labels

Owner labels

Overall security flow

Ongoing management

Summary

Introduction
SensorNet is composed of many diverse elements: sensors, nodes, databases, applications, and the links between all of these (e.g., the Internet). Because the data
in SensorNet deal with chemical, biological, and radiological threats, security is an essential element of the overall SensorNet architecture. This document
describes what we mean by security, and how we implemented a cost-effective security solution.

Security usually is defined in terms of three mantras:

● Confidentiality– Protection of information from disclosure to unauthorized entities
● Integrity– Prevention of unauthorized changes to information
● Availability– Assurance that the whole system works so that data can reliably be gathered, stored, and accessed when needed.

SensorNet has three additional requirements that go along with the usual ones:

● Non-repudiation – Confidence that a message was sent by a certain party or device and not an impostor
● Authentication – Is the person (or device) who he (it) claims to be?
● Authorization – Is the subject allowed to access a particular object or to perform a particular operation?

However, absolute security is impossible. Cost-effective solutions to these issues must be created after a risk assessment procedure that enumerates the threats
and vulnerabilities, calculates the risk (the product of the probability of an occurrence times the impact of the occurrence), proposes methods to reduce the risk,
and evaluates the residual risk.

SensorNet is a pilot program and accordingly must accept more risk than would exist in an operational deployment. There are two major risks that we have
identified that are hard to reduce. The overall availability is lower than we would like because we cannot afford to have redundant data paths across the Internet.
We also leave sensors unattended where they are subject to vandalism and environmental insults. Many diverse pieces of SensorNet must work together to
produce useful analyzed output data, but as a pilot program, we can only guarantee that this will occur on a “best effort" basis. The other large risk is that we have
no direct control over SensorNet users. We expect to have a diverse collection of SensorNet users from Local, State, and Federal governments, the military, and
also researchers, analysts, politicians, and so forth. Given that an unprotected PC can become infected with a trojan within 5 minutes of being attached to the
Internet (shorter than the patch download time), we expect that many of the computers used to access SensorNet data will be compromised. These trojans can
steal user's credentials and use them to impersonate legitimate SensorNet users. There are very few if any cost-effective solutions to the trojan problem other than
user education. Because of this problem, we decided to replace user IDs and passwords with X.509 public Key Infrastructure (PKI) certificates.

Why are certificates the best SensorNet security solution?

Because SensorNet is a vital component of Homeland Security, it is necessary to implement a viable security solution that provides strong proof of identity and
contains the encryption tools and information necessary to provide protection from most of these threats. SensorNet has decided to implement a Public/Private
Key Certificate infrastructure. Initially this will be done via software, but later can be converted to hardware-based tokens for added security. This Public Key
Infrastructure (PKI) has several advantages:

Flexibility
The security system should be able to protect all of our resources as well as implementing security policies that are more sophisticated than mere file-access
restrictions.

User friendliness
Using a system with good security should be about as easy as using one without security.

Scalability
Solutions should scale well as more facilities or users are added to SensorNet

Uniformity
The solutions should look the same (but may have differing properties) across SensorNet

Collaboration
Things that encourage the collaboratory aspects of SensorNet should be encouraged.

Conformance to standards
PKI is a mature tool set supported on all platforms in an interchangeable manner.

To aid users in using and managing their certificates, SensorNet has developed extensive online help for users (https://ca.sensornet.gov:8442/ejbca/HowTo/
CertificateInfrastructure.html).

To issue and manage entity certificates, SensorNet has set up its own Certificate Authority (CA) and an LDAP server to manage user information and to allow
distribution of user's public keys. The SensorNet CA is based upon the open source Enterprise Java Bean Certificate Authority (http://ejbca.sourceforge.net/). The
LDAP server is OpenLDAP (http://www.openldap.org/).

The SensorNet CA originates, signs, revokes, and publishes certificates. Certificates are issued for servers, nodes, and clients, which include users and software
agents. Certificate Revocation Lists (CRLs) are published hourly by the SensorNet CA. Eventually we plan to supplement CRLs with OCSP (Online Certificate
Status Protocol) which provides real-time certificate status information. All certificates used in SensorNet must be signed by the SensorNet CA.

There are several important reasons for creating a separate SensorNet CA.

We can control the certificate contents
The SensorNet certificates (which are also issued to nodes, servers, and applications) contain a role that is used as a basis for authorization.

The name space is uniform and unique
We can ensure that each user has a unique common name (CN). This has proved to be a problem in infrastructures that accept certificates from multiple CAs.

Certificate management is easier for the user
Because our servers trust our CA certificates and no others, the only certificates that can be used by an entity to access SensorNet is one of ours. This ia
automatically selected from the user's certificate cache. As a side effect, it makes it much harder to attack our sites without one of our certificates.

Cross-realm trust is hard to manage
Historically, large inhomogeneous certificate-based cross-realm infrastructures have never worked. There is always some out-of-band information needed to
identify the particular John Smith you went to high school with. By managing this trust ourselves, we can obtain a uniform set of information about each entity to
make these decisions. Especially due to privacy laws, it is increasingly difficult to gain access to this information if it is controlled by other entities. We intend to
get the necessary out-of-band information by having an individual at each site be responsible for managing the site users. If desired, SensorNet sites can issue
SensorNet certificates by becoming a SensorNet Registration Authority (RA).

Overview of the security infrastructure
All SensorNet information is exchanged via Web services and Web applications. All connections use encryption, and client certificates are used for authenticated
connections. Authorization is achieved by labeling data with its owner, sensitivity, and function (which controls need to know). This schema is illustrated in Fig.
1.

Fig. 1. Layered approach to SensorNet information security

Sensitivity labels exist because some SensorNet data are Official Use Only (OUO), or proprietary information, and must be labeled to comply with Department of
Energy (DOE) orders. However, these labels are not currently used for access control. Instead, SensorNet used separate but complementary mechanisms for type-
based and owner-based access control.

Owners of sources of data desiring open access to their data can avoid managing access control. But they can also restrict data by creating a policy (or delegating
it to SensorNet) that uses fields in the entity's distinguished name (DN) to specify which entities can access the owner's data.

Function labels, which describe the type of the data, are flexible enough to allow the creation of new kinds of data without modification to permissions or to the
roles that are used to mediate this data access.

Encryption
All SensorNet communications are encrypted to prevent eavesdropping and to assure data integrity (via the secure hashes used by the encryption protocols). Web
Features Services (WFS) and Web applications use Secure HyperText Transport Protocol (HTTPS). HTTPS uses Transport Layer Security/Secure Sockets Layer
(TLS/SSL). HTTPS servers require SensorNet server certificates, and whenever authentication is needed, client certificates are required.

Management functions and file transfers are performed using the Secure Sockets Layer (ssl) protocol.

The SensorNet Policy Server
Each WFS request or request for a Web page must be accompanied by a client certificate, passed to the SensorNet Policy Server (SPS). The SPS validates the
issuer of certificate as the SensorNet CA and checks the certificate validity dates. The certificate is then checked against the CRL to be sure that it has not been
revoked. The SPS matches the information in the certificate against the policy for each owner wishing to control access to create a list of allowed owners. The
SPS maintains a database that associates each user with a set of roles. These roles determine sets of allowed functional labels. The labels are unioned to create a
set of allowed functions. The SPS returns the certificate validity, and lists of allowed owner and functional labels in an XML message to the server. We call this
process Certificate Access Management (CAM). The overall event flow is illustrated in Fig. 2.

Fig. 2. How PKI certificates are used to authenticate and authorize the user.

Servers and applications can cache this information and maintain session information without using cookies because the certificate is presented with each request.
Therefore, only one request to the policy server per session should be required.

Users may check their SensorNet certificates using a servlet created for this purpose (and for general testing). https://ca.sensornet.gov:8443/policyengine/servlets/
UserAppServlet returns information as shown in Fig. 3.

Fig. 3. The information used by and returned to the SPS.

Functional Labels
The purpose of functional labels is to control “need to know” and to allow queries an easy way to limit the scope to a functional subset of the data. Therefore, the
query that gets sent to the database contains the intersection of the user's allowed labels and the labels desired by the application. Labels composed as an ordered
set of dot-delimited names such as:

model.dispersion.scipuff
sensor.chem.smiths.centurion
model.effects.*
sensor.*

The first two labels are appropriate for a row in the database. All database rows must have a fully qualified label with mo wildcards (*). The second two labels are
appropriate to the permitted functional labels for an entity, or for an application wishing to limit the scope of a query. Because of the wildcards, entities can enter
new data types into the database by subclassing them. For example, a data producer with permissions

model.effects.*

could create a new row label

model.effects.radiological.fallout

without any changes in its permission set.

Functional labels are managed by the SesnorNet Security Administrator using a tool developed for this purpose. Each user is assigned a collection of roles which
are also managed by the tool. Figure 4 shows a list of the current roles used by SensorNet.

Fig. 4. Roles and their corresponding functional labels. Note that most roles have different read and write labels associated with them.

Associated with each role is a set of functional labels, and in general these are different for reading and for writing. Users can be selected and assigned (or
reassigned) roles as shown in Fig. 5. Because the functionality of the different entities with certificates (people, servers, nodes, applications) is quite different,
roles are handled separately for each group.

Fig. 5. Role assignment for entities.

A more detailed example will illustrate how functional labels are used more clearly. Consider the following role table:

Table 1. Example roles
Role Read Write

first responder
model.effects.*
sensor.chem.*

Analyst model.*
sensor.noaa.dcnet

dispersion model sendor.* model.dispersion.*

effects model model.dispersion.* model.effects.*

Consider the process flow for a wfs:GetFeature request (a query against the data).

1) The request includes a list of functional labels for data requested (and client certificate). in this example, the request specifies model.dispersion.hysplit, model.
effects.*, sensor.chem.smiths.*, sensor.noaa.*

2) After certificate is validated, the name is used to look up the roles assigned to the user. Assume that the user has the roles of FirstResponder and Analyst.

First Responder role has read labels: model.effects.*, sensor.chem.*
Analyst role has read labels: model.*, sensor.noaa.dcnet

3) The read label lists for all the user’s roles are union-merged to produce the authorized list of labels:
model.*, sensor.chem.*, sensor.noaa.dcnet

4) The authorized label list (3) is intersection-merged with the request labels (1) to produce the authorized request label list:
model.dispersion.hysplit, model.effects.*, sensor.chem.smiths.*, sensor.noaa.dcnet

Table 2. Features in the database

ID Label

001 model.dispersion.scipuff

002 sensor.noaa.raman

003 model.effects.ripd

5) The authorized request label list is passed to the database query. The label match is implemented with external database function or by using a regular
expression (depending upon the database). As a result, only feature 3 will be returned to the user.

Algorithms for the merge and match operations have been developed and tested in Java and C/C++. The match was also implemented as C language database
extension function for PostgreSQL and Oracle. The match was also implemented with regular expressions. Using regular expression processing is more efficient
for Oracle, but an external function implemented in C is faster for PostgreSQL.

Owner labels
Owner labels allow data owners to control who can access their data independent of the type of the data. This ability targets data owners such as the military.
Each feature/data record includes an optional owner label. The label is a name, such as FtBragg. The Owner label for a feature may be null or blank, meaning that
there are no access restriction for that row based on data owner. We anticipate many features will have no owner label.

Data owners can delegate the management of their access policy to SensorNet or they can manage it themselves. Currently, owner label policies are based upon
Boolean expressions of the different fields in the DN of the entity's presented certificate. For example, some policies might be:

O==“Ft Bragg” && OU==“Soldier Support Center” (organization is Ft Bragg and organization unit is SSC)
CN==“SSgt Jonathan C. Doe” (name is SSgt Doe)
O==“Ft Bragg” && OU==“SSC” && !(T==“Test” || T==“Guest”) (roles test and guest are excluded)

There is a different policy for each entity type (people, nodes, applications, servers). These policies are managed by the entity assigned by the owner of the data,
or by the SensorNet Security Administrator using another tool developed by SensorNet — The OwnerListManager as shown in Figs. 6–8.

Fig. 6. The owner list user interface as seen by a SensorNet Administrator. The fields in the top row allow the Administrator to assign owner
management for an organization to a particular certificate holder. Current assignments are listed in the box at the top-left.

Fig. 7. The Owner List interface as seen by an organization's manager.

There is a different policy for each entity type (people, servers, nodes, applications) as selected in the top-right dropdown. Each row in the interface represents a
field in the certificate for that entity type. The fields are populated from the LDAP which contains the information for all issued certificates. The fields in the
presented certificate are compared one at a time (in the order specified by the order dropdowns) to the selected policy. The result of each comparison is ANDed
or ORed according to the selection in the radio buttons (top-left) to determine whether the user passes the owner's test.

Fig. 8. A policy for ORNL-owned data

After the manager presses the Done button, the resulting policies for that organization are displayed, and the overall policy data file is updated. In this example,
for people, ORNL is requiring that people belong to ORNL and are in SensorNet, and that they do not have the role of Null or Test.

An important issue is that if there is a real emergency, owners may be willing to let additional entities access their data. Owners can indicate this by checking the
Escalate in Emergency check box. This feature is not yet implemented in the SPS. We are working to create an Alerting Agent that will notify the SPS of an
event, its location, and scope. The SPS will use this alert to (for example) add additional roles to First Responders near the event.

Currently there are no distinctions between owner read and write permissions. We believe that the different entity types and separate read/write functional labels
will provide the necessary access control. For example, an application might read data with one owner label, and write it out (say as an average) with a different
owner label.

To make things more concrete, consider how owner labels are used in a wfs:GetFeature request.

1) The request includes the client certificate

2) The client certificate is matched against each owner’s policy for the entity type to produce the list of accessible owners

3) The accessible owners list is passed to the database query

The query matches each row with an owner label null or in the accessible owners list
Owner labels are applied before functional labels in the query

The process flow for a wfs:Transaction/Insert request is as follows:
1) Same as above

2) Same as above

3) The Owner label in the feature to insert is checked against accessible owners list to determine if the insert is allowed

Overall security flow
The flow of a wfs:GetFeature request is illustrated in Fig. 9.

Fig. 9. The data flow path for a wfs:GetFeature request.

The Client initiates a request (from a Web page). The WFS server sends the Client's certificate to the Policy Engine (the SPS). The SPS checks the certificate,
creates a list of allowed owners and functional labels, and returns it with an allowed status to the WFS server. The WFS server merges the request functional
labels with the allowed labels and forwards the request to the database. The result is displayed by the WFS server for the user.

Ongoing management
Ongoing management of the information needed to maintain the functional and owner labels is a challenge. Organizations must take responsibility to inform
SensorNet when their personnel change. When new organizations join SensorNet, Owners may have to redefine their policies for data access. Out-of-band
information is always required during the certificate issuance process to assure the true identity of a person, and to be sure that the correct person obtained the
certificate. SensorNet will require a security contact at each site who must take responsibility for these issues.

Summary
We believe that this implementation meets the security requirements of SensorNet. Specifically

Confidentiality is provided by

● PKI and certificate authentication of clients
● Functional and owner labels for access control and authorization
● Encryption of all data in transit
● Strong authentication of users based on a client certificate

Integrity is assured by

● The cryptographic hash in the encryption based on server certificate issued by the SensorNet CA
● Backup and replication of the databases

Availability will be on a best effort basis utilizing

● Test and deployment servers
● Redundant data links (in some cases)
● Firewalls and intrusion detection to prevent against denial-of-service and other attacks

Non-repudiation is provided because

● Each insert request is accompanied by a client certificate, and the CN of the inserter is in the database.
● The certificate used for this was issued by the SensorNet CA and validated.

file:///c:/Documents%20and%20Settings/jar/My%20Documents/SensorNet/SecurityImplementation/SensorNetSecurityImplementation.html4/20/2005 4:14:57 PM

https://ca.sensornet.gov:8442/ejbca/HowTo/CertificateInfrastructure.html
https://ca.sensornet.gov:8442/ejbca/HowTo/CertificateInfrastructure.html
http://ejbca.sourceforge.net/
http://www.openldap.org/
https://ca.sensornet.gov:8443/policyengine/servlets/UserAppServlet
https://ca.sensornet.gov:8443/policyengine/servlets/UserAppServlet

	Local Disk
	SensorNet Security Implementation

