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ABSTRACT

Although the Monte Carlo method is considered to be the most accurate method available for solving radiation

transport problems, its applicability is limited by its exorbitant computational expensive. Thus, variance reduction

techniques, which require intuition, guess work, and iterations involving manual adjustments, are employed to make

reactor calculations feasible. Responding to this di�culty, we have developed methodology for automatic variance

reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function for source biasing and

consistent transport biasing with the weight window technique. We describe the implementation of this method

into the standard production Monte Carlo code MCNP, and its application to a realistic calculation; namely, the

reactor cavity dosimetry calculation. The e�ectiveness of the method, as demonstrated through the increase in

calculational e�ciency, is quanti�ed. Moreover, important issues associated with this method and its e�cient use

are discussed. The increases in performance associated with this method can substantially increase the practical

applicability of the Monte Carlo method for large real-world applications.

I. INTRODUCTION

In the �eld of nuclear engineering, deterministic (Discrete Ordinates) and stochastic (Monte Carlo) methods

are most often used to solve shielding type problems. As one might expect, each method has its own strengths

and weaknesses. In general, Monte Carlo (MC) methods are more accurate, but require far greater computational

resources. This is particularly true for deep-penetration shielding calculations involving several orders of magni-

tude attenuation. Despite the steady increase in available computational performance, unbiased or analog MC

methods are not practical, or even possible, for real reactor applications. For these applications, either biased MC

methods or the discrete ordinates (SN ) method, which contains uncertainties associated with the discretization of

the independent variables of the transport equation, are used. In this work, we attempt to take advantage of the

strengths of both methods and use them in a complementary manner. Speci�cally, deterministic adjoint solutions

are employed for automatic variance reduction (VR) of MC shielding calculations. Herein, the expressions variance

reduction and biasing refer to fair-game techniques used in MC calculations to reduce the computer time required

to obtain results of su�cient precision.

To make a di�cult MC shielding calculation computationally practical, or in most cases possible, we employ

our basic knowledge of the physics of the problem and the available VR techniques to coerce important particles

to contribute to the quantity of interest (e.g., reaction rate, dose, etc.). While the application of VR techniques

is fairly straightforward for simple one-dimensional problems, it can be quite di�cult for realistic problems that

are often complex and three-dimensional. Thus, the shielding analyst typically engages in an iterative process to

develop the VR parameters and subdivide the geometry to facilitate the parameters; converging at some acceptable

level of calculational e�ciency. Unfortunately, the appropriate VR parameters vary signi�cantly with problem type

and objective. Therefore, the iterative steps must be repeated to determine the VR parameters for calculations

with di�erent objectives. Automatic importance generators, such as the weight window generator in MCNP[1],
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are currently available, but are restricted by their statistical nature and are of limited use in multi-dimensional

deep-penetration problems. In the absence of more sophisticated methods, however, the weight window generator

is a very useful tool in determining the VR parameters[2].

A further di�cultly lies in the statistical convergence of the MC results. For large complex applications, it

is not uncommon to spend days (and possibly weeks) iterating and adjusting the VR parameters only to achieve

reasonable e�ciency with unstable statistical behavior. This unstable statistical behavior is caused by improper

use of the VR methods (i.e., insu�cient detail and/or inappropriate selection of the parameters) and is usually the

result of undersampling some important region of the problem phase-space[3]. Further, this undersampling is often

di�cult to identify and correct.

It has long been recognized that the adjoint function (i.e., the solution to the adjoint Boltzmann transport

equation) has physical signi�cance as a measure of the importance of a particle to some objective function (e.g.,

the response of the detector)[4]. It is this physical interpretation that makes the adjoint function well suited for

biasing MC calculations. Thus, the idea of using the adjoint function to accelerate MC calculations is not new;

and a number of applications of deterministic adjoint solutions have been made[5, 6, 7].

In this work, we propose a method for using the SN adjoint function for automatic VR of MC calculations

through source biasing and consistent transport biasing with the weight window technique. We describe the

implementation of this method into the standard production MC code MCNP, and its application to a realistic

calculation, namely the reactor cavity dosimetry calculation. The e�ectiveness of the method, as demonstrated

through the increase in calculational e�ciency is quanti�ed. Moreover, this paper addresses important issues

associated with this method and its e�cient use and implementation.

II. THEORY

Problems that can be solved by the MC method are essentially equivalent to integrations[8]. For example, the

goal of most MC particle transport problems is to calculate the response (i.e., ux, dose, reaction rate, etc.) at

some location. This is equivalent to solving the following integral

R =

Z
4�

Z
V

Z
E

	(r; E; 
̂)�d(r; E)dEdV d
̂; (1)

where 	 is the particle ux and �d is some objective function.

From the following identity[4]

h	yH	i = h	Hy	yi; (2)

where Hy is the adjoint operator and hi signify integration over all the independent variables, one can show that

the response R (for a vacuum boundary condition) is also given by

R =

Z
4�

Z
V

Z
E

	y(r; E; 
̂)q(r; E)dEdV d
̂; (3)

where 	y and q(r; E) are the adjoint function and source density, respectively, and (Eqs. 1 and 3) are equivalent

expressions for R.

To solve this integral the independent variables are sampled from q(r; E), which is not necessarily the best

probability density function (pdf) from which to sample. An alternative pdf , q̂(r; E) can be introduced into the

integral as follows:

R =

Z
V

Z
E

�
�y(r; E)q(r; E)

q̂(r; E)

�
q̂(r; E)dV dE; (4)

where q̂(r; E) � 0 and
R
V

R
E
q̂(r; E)dV dE = 1.

From importance sampling[9], the alternative pdf q̂(r; E) that will minimize the variance for R is then given by

q̂(r; E) =
�y(r; E)q(r; E)

R
: (5)

Thus, to increase the e�cience of the MC calculation the source energy and position are sampled from the biased

source distribution q̂(r; E). Physically, the numerator is the detector response from space-energy element dV dE at



(r; E), and the denominator is the total detector response R. Therefore, the ratio is a measure of the contribution

to the detector response.

Since the source variables are sampled from a biased pdf , the statistical weight of the source particles must be

corrected such that

q̂(r; E) W (r; E) = q(r; E): (6)

Substituting (Eq. 5) into (Eq. 6) and rearranging, we obtain the following expression for the statistical weight of

the particles

W (r; E) =
R

�y(r; E)
: (7)

This equation shows an inverse relationship between the adjoint (importance) function and the statistical weight.

Previous work[10] in this area has shown this relation to be near optimal, and others have veri�ed this relation-

ship through computational analysis[5, 11]. However in this work, this relationship was derived from importance

sampling.

To use the weight window facilities within MCNP, we need to calculate weight window lower bounds Wl. The

width of the weight window interval is controlled by the parameter Cu, which is the ratio of upper and lower weight

window values (Cu =
Wu

W
l

). Therefore, the weight window lower bounds Wl are given by

Wl(r; E) =
W

(Cu+1
2

)
=

R

�y(r; E)

1

(Cu+1
2

)
: (8)

It is important to note that because the source biasing parameters and weight window lower bounds are consis-

tent, the statistical weights of the source particles (W (r; E) =
q(r;E)

q̂(r;E)
) are within the weight windows as desired.

If the statistical weights of the source particles are not within the weight windows, the particles will immediately

be split or rouletted in an e�ort to bring their weights into the weight windows[1]. This will result in unnecessary

splitting/rouletting and a corresponding degradation in computational e�ciency. For problems in which the ad-

joint function varies signi�cantly within the source region (space and/or energy), this coupling between source and

transport biasing is critical.

III. IMPLEMENTATION INTO MCNP

A. Overlay of Importance Function

The general version of MCNP provides facilities for energy and cell dependent weight windows. This means

that in order to use a �ne spatial weight window grid (which is necessary in optically thick regions), the user

must subdivide the cell based geometry such that the ratio of importances between adjacent geometric cells is not

large. Because the importance ratios are not apriori known, this geometric discretization is not straightforward

and typically requires iterations of adjustments. Further, the subdivision of the geometry into a very large number

of cells is time consuming and can actually degrade the e�ciency of the calculation. For these reasons, we use the

deterministic SN spatial mesh description to construct a separate, but related, geometric grid to facilitate the use

of the adjoint distribution. This is done with a modi�ed version of the MCNP code that is able to read the binary

ux �le (which contains the adjoint function and the spatial mesh and energy group information) from the standard

SN DORT code[12] and superimpose the variable spatial mesh and energy grid onto the MCNP problem. This

grid facilitates the use of the spatial and energy dependent importance function, and does not directly a�ect the

transport of particles. At various events in a particle history (e.g., collisions, surface crossings, and/or increments

of mean free path), the grid is searched to determine the importance of the phase-space within which the particle

resides. The importance is then compared to the statistical weight of the particle and the appropriate action is

taken (e.g., splitting, Russian roulette, or no action). It should be noted that with the cell-based weight windows

in the standard version of MCNP, additional spatial searching is not required.

B. Weight Checking

Various concepts for minimizing the amount of computational overhead associated with this process have been

examined. The �rst issue of concern is the determination of the appropriate time (or event) to check the particle's
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Figure 1: One Octant of the Three Mile Island unit 1 (TMI-1) Reactor

statistical weight. This is important for the following reasons: (1) because the MCNP geometry does not need

to be manually subdivided to facilitate the spatial importances, the presently available weight checks (i.e., at

collisions and surface crossings) are no longer su�cient to control particle weight and thus large di�erences in the

weight scored by individual particles are possible, (2) there is a computational cost or penalty each time the weight

is checked, and this penalty is the time required by the searching routines to determine the space and energy

importance interval within which the particle resides, and (3) more frequent checking leads to more reliable results

with well-behaved statistical convergence, but at some point the calculational e�ciency is sacri�ced. Therefore, it

is clear that we need to determine an optimum or near-optimum criteria for checking particle statistical weights.

Moreover, it is desirable that this criteria be problem independent.

Since the mean free path (mfp) is, by de�nition, the average distance a particle travels between collisions, it is a

logical, problem independent parameter by which particle statistical weight can be controlled. Parametric studies

analyzing the e�ect of the increment of mfp on problem e�ciency and reliability[13] verify that a mfp increment of

unity is a near-optimal problem-independent criteria for checking particle statistical weights.

III. APPLICATION AND ANALYSIS

A. Reactor Cavity Dosimetry Calculation

This problem addresses a major concern of nuclear utilities. The life of a reactor and its possible extension

are directly dependent on the embrittlement of the reactor pressure vessel (RPV), a low carbon steel container

surrounding the reactor core, under neutron irradiation. The embrittlement of the RPV material is due, primarily,

to the bombardment of neutrons with energies greater than �1 MeV, and cannot be directly determined from

measured quantities. Radiation detectors are employed to provide data by which calculational methods can be

benchmarked. Often the dosimeter is outside the RPV, in what is referred to as the cavity; hence it is called cavity

dosimetry. The cavity dosimetry calculations attempt to estimate high-energy (� 1.0 MeV) reaction rates in a



Figure 2: Adjoint Function Distribution for Energy Group 3 (10.00-12.14 MeV)

small volume at a distance of �350 cm from the core centerline, and are thus used to estimate RPV integrity and

provide a basis for plant life extension. The problem is illustrated in Fig. 1. In the past, the SN method was

used, almost exclusively, to perform these calculations. More recently, the MC method has been employed for this

application in an e�ort to better understand the uncertainties associated with the SN method and to attempt to

benchmark SN calculations.[14]

For this application, the 63Cu(n,�), 58Ni(n,p), and 54Fe(n,p) reaction rates (responses), which have thresholds

energies of �5.0, �1.0, and �1.0 MeV, respectively, are all of equal interest, and thus we calculate an e�ective

response function as a normalized sum of each of the normalized response functions. Using this e�ective response

function, we can generate an importance function that will simultaneously optimize the calculation for all three

reaction rates, and thus avoid calculating an importance function for each individual response that would require

three separate MC calculations.

With this e�ective response function as the adjoint source, a two-dimensional R-� adjoint function is calculated

with the DORT code using the SAILOR 47-group library[15] and a symmetric S8 quadrature set. Figure 2 shows

this adjoint function distribution for energy group 3 (10.00-12.14 MeV). The modi�ed version of MCNP reads

the adjoint function from the standard DORT binary ux �le, couples the original source distributions with the

adjoint function to generate the source biasing parameters and weight window lower bounds, and then performs

the transport calculation. The SN spatial mesh which is used within MCNP to facilitate the spatial importance

distribution is shown in Figure 1. Within MCNP the source spatial distribution is represented by a probability

distribution function at 24 axial locations in each fuel pin of the last two (peripheral) layers of assemblies and the

energy distribution is based on an equivalent �ssion spectrum for the U and Pu �ssile isotopes.[16] The following

approximations/assumptions are made in this process: (1) the axial behavior for the adjoint function is approxi-

mated with a cosine distribution, and (2) to represent the spatial dependence of the energy biasing parameters, the

energy dependent adjoint function is averaged over each user de�ned spatial source cell, and a dependent source

energy biasing distribution is calculated for each source cell. For this particular application, each assembly has an

associated source energy biasing distribution. No modi�cations to the source routines are necessary, since the ca-

pabilities to handle source variable biasing and dependent source distributions are standard features of the MCNP

code.

Since the focus of this work is on the automatic VR for the calculation and not on the calculation itself, the

interested reader is referred to the references[14] for discussions regarding the accuracy of results with respect

to measurements and SN calculations, as well as sensitivity studies related to various aspects of this calculation.

However, to provide some idea about the accuracy and to demonstrate that the automatic VR technique does not



Table I: Calculated-to-Experimental (C/E) Ratios at the Cavity Dosimeter for TMI-1

Manually Optimized Automatic VR

Reaction C/E FOM C/E FOM
63Cu(n,�) 0.905(0.022)a 3.7 0.878(0.022)a 16 (4.3)b

54Fe(n,p) 0.965(0.023) 3.5 0.964(0.020) 20 (5.7)
58Ni(n,p) 0.947(0.020) 4.5 0.952(0.019) 22 (4.9)

a 1� uncertainties
b ratio of Automatic VR and Manually Optimized FOMs
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Figure 3: Relative Error vs Computer Time

bias the calculation, calculated-to-experimental (C/E) ratios, corresponding to ENDF/B-V material and SAILOR

dosimetry cross-sections, are given in Table I. The di�erences between C/E ratios calculated with the manually

optimized model and with the adjoint importance function are within the statistical uncertainties.

B. Comparison of Calculational E�ciency

With the use of the automatic VR method, the computer time required by the MCNP model to calculate the

reaction rates at the cavity dosimeter with 1� uncertainties of less than 3% is �1 hour on an IBM RISC/6000

model 370. To reach the same precision (3%) with the manually optimized model requires nearly 5 hours of CPU

time. This behavior is demonstrated in Fig. 3 which plots relative error (RE) and Cp
T
(where C is a constant and

T is computer time) versus computer time for the three reaction rates of interest. The two sets of curves in Fig.

3 correspond to calculations performed with di�erent VR approaches; namely, manually optimized VR (including,

energy cuto�, source biasing, weight windows (2 energy groups), and the exponential transformation; see Ref. [14]

for details) and the automatic VR derived from a 2-D adjoint function distribution (18 energy groups) using the

e�ective response function.

Table I lists the Figure-Of-Merit (FOM) values [FOM = 1=(R)2T ] and reveals that the use of the automatic



Table II: Comparison of Estimated REs and Calculated Relative Standard Deviations at the Cavity Dosimeter
Manually Optimized Automatic VR

average calculated relative average calculated relative

Reaction estimated REa standard deviationb ratio estimated REa standard deviationb ratio
63Cu(n,�) .0229 .0198 0.86 .0223 .0178 .799
54Fe(n,p) .0203 .0243 1.20 .0197 .0132 .668
58Ni(n,p) .0181 .0200 1.10 .0189 .0142 .750

a refers to the average of the REs estimated by MCNP in the 10 runs
b refers to the relative standard deviation of the calculated reaction rates in the 10 runs

VR increases the calculational e�ciency by more than a factor of 4 with respect to our best manually optimized

model. Further, the use of the adjoint function can be shown to increase the calculational e�ciency by a factor of

�104 with respect to the unbiased case.

It should be noted that the aforementioned computer times do not include the SN adjoint calculation. Also,

for the purpose of comparison, the synthesized 3-D deterministic results (group uxes for energies greater than

�1 MeV) can be produced by two 2-dimensional and one 1-dimensional calculations which require �.25, .25, and
0.005 hours of computer time, respectively, on an IBM RISC/6000 model 370. The computer time required for the

synthesis process is essentially negligible. Thus, group uxes over the entire spatial domain can be generated by

DORT in <1 CPU hour.

C. Statistical Convergence

One potential problem associated with the intense use of VR techniques is erratic or unreliable error estimations.

Figure 3 shows that the RE follows the expected behavior predicted by the Central Limit Theorem (RE � 1p
N
�

1p
T
; where N is the number of particle histories), which provides some indication about the validity of the estimated

RE. The use of the automatic VR method appears to lead to smoother statistical convergence. All three reaction

rate tallies pass all 10 of the MCNP statistical checks[1], providing an additional indication of proper statistical

convergence.

To further assess the estimated uncertainties, the manually optimized and automatic VR cases were each run

10 times with di�erent starting random number seeds. This allows us to compare the RE as estimated by MCNP

to the relative standard deviation of the calculated means (reaction rates) from the multiple runs. The number

of histories were chosen such that both cases would yield similar REs; the manually optimized and automatic VR

cases required 20E+6 and 3E+6 particle histories, respectively. Table II compares the calculated relative standard

deviations to the average (MCNP) estimated REs, and reveals that the RE is underestimated by as much as 20%

in the manually optimized case and overestimated by more than 20% in the automatic VR case. In other words,

the estimated REs from the automatic VR case are much more reliable than those from the manually optimized

case.

For a normal distribution, the calculated value should be within the 1� RE 67% of the time. For our 10 runs

(with 3 reaction rates per run), the calculated values are observed to be within the 1� RE 57% of the time for

the manually optimized case and 87% of the time for the automatic VR case. In addition, the standard deviation

of the estimated REs and the estimated variance-of-the-variance (VOV) are a factor of �3 less in the automatic

VR case than in the manually optimized case. These results clearly demonstrate that the automatic VR method

produces reliable error estimations.

D. E�ect of Adjoint Accuracy on Calculational E�ciency

The e�ectiveness of an adjoint (importance) function for VR of MC calculations is dictated by its accuracy. It

is for this reason that we use an accurate method - the SN method - to calculate the adjoint function. However,

for extremely large problems and for the extension to three-dimensional adjoint functions, the memory and disk

space requirements for the SN adjoint calculations can become prohibitive. One way to alleviate this problem

is to sacri�ce some of the accuracy of the adjoint calculation through the use of fewer energy groups. However,

the relationship between the accuracy of adjoint functions and their e�ectiveness for VR of MC calculations is



somewhat problem dependent and is not well known. Therefore, in this section we investigate the e�ectiveness of

importance functions with varying degrees of energy-dependent accuracy.

To examine the e�ect of using an adjoint function with varying numbers of energy groups, one of the following

two approaches may be employed: (1) collapse an appropriate multigroup library into various libraries with fewer

groups and use these libraries to calculate adjoint functions or (2) calculate the adjoint function for a given number

of (maximum) groups and collapse it into various coarse group structures. In this study, we have chosen the

second approach because it does not require the generation of additional multigroup libraries and subsequent

SN calculations, and it uses an accurate importance function as its starting point. In other words, this method

eliminates concerns related to the selection of multigroup boundaries for the cross section collapsing procedure;

speci�cally, the e�ect of their selection on the accuracy of the SN solution.

To collapse an adjoint function into fewer groups, it is necessary to introduce group quantities such that the

total response R,

R =

Z
V

Z
E

�y(r; E)q(r; E)dEdV (9)

is conserved. This is done by setting the integral equal to the product of the adjoint function and the source in

broad group k: Z
k

�y(r; E)q(r; E)dE = �
y
k(r)qk(r); (10)

where we de�ne the coarse group source and adjoint by

qk =

Z
k

q(r; E)dE;

�
y
k =

R
k
�y(r; E)q(r; E)dE

qk
: (11)

This procedure formally preserves the total response and leads to the de�nition of a coarse group adjoint

through source-weighting. Because of the source-weighting, these relations are only applicable within the source

region. However, for this study, it is desirable to collapse the adjoint throughout the problem (i.e., including regions

outside the source region(s)). To do this, it is necessary to conserve the response from each spatial region. Since

the forward ux in a spatial region can be considered to be the source of particles within that region, it may be

used to weight the adjoint in the collapsing procedure. Replacing the source term with the forward ux in the

preceding relations, yields: Z
k

�y(r; E)�(r; E)dE = �
y
k(r)�k(r); (12)

where we de�ne the coarse group ux and adjoint by

�k =

Z
k

�(r; E)dE;

�
y
k =

R
k
�y(r; E)�(r; E)dE

�k
: (13)

A program was written to read the DORT binary ux �les from forward and adjoint calculations, perform the

collapse as discussed above, and generate a collapsed adjoint binary ux �le in the same format. Thus, allowing the

current modi�ed version of MCNP to read and utilize the various collapsed adjoint functions without additional

modi�cations.

The 18-group (energy groups above 1 MeV) adjoint is collapsed into 9-, 6-, 3-, 2-, and 1-group adjoint functions.

The coarse group boundaries are a subset of the �ne-group boundaries, and each coarse group contains the same

number of �ne groups. For example, in the 6-group structure, the highest energy group contains the highest three

groups of the 18-group structure.

Figure 4 shows the relationship between the number of adjoint energy groups and the MC calculational e�ciency,

in terms of FOM. The FOM values are normalized such that the highest value is unity. The �gure demonstrates

that for the 54Fe(n,p) and 58Ni(n,p) reaction rate calculations there is no bene�t to using more than �9 groups, and
relatively minor losses in e�ciency are associated with using even fewer energy groups. On the other hand, because

the 63Cu(n,�) reaction rate calculation is sensitive to a rather narrow energy range (�6-12 MeV), large losses in
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e�ciency are observed when fewer energy groups are used. Nevertheless, for this particular problem an adjoint

with relatively few energy groups (�3 groups) is capable of increasing the calculational e�ciency to approximately
half of the observed maximum, which is a factor of �104 more e�cient than the analog case.

IV. SUMMARY

A general method for automatic VR of MC shielding calculations with the space- and energy-dependent SN
adjoint function has been presented. The theory supporting the use of the adjoint function to bias MC calculations

is based on the physical interpretation of the adjoint function. The equations for determining the VR parameters

(source biasing parameters and weight window values) were derived from basic importance sampling with the

adjoint function as the weighting function. Physically, the equations for the source biasing parameters represent a

measure of the contribution to the detector response from the space-energy elements.

This method is implemented into the general purpose MC code MCNP. Currently, this modi�ed version of

MCNP is able to (1) read the adjoint function and the variable spatial mesh and energy group information from

a standard SN code (DORT) binary ux �le, (2) superimpose the variable spatial mesh and energy grid onto

the MCNP problem, (3) couple the original source distributions with the adjoint function to generate dependent

source biasing parameters and weight window lower bounds, and (4) perform the transport calculation using the

constructed grids and calculated parameters. The grids facilitate the use of the space- and energy-dependent

importance function, and do not directly a�ect the transport of particles.

The e�ectiveness of this method within the modi�ed version of MCNP has been veri�ed through its application

to a realistic shielding calculation; namely, the reactor cavity dosimetry calculation. With the use of this method,

the e�ciency of the reaction rate calculation was shown to increase by more than a factor of 4 and the statistical

convergence was improved with respect to our best manually optimized model. Further, the use of this method does

not require the intuition, guess work, and/or manual intervention typical of current VR techniques (or importance

function generators), thus signi�cantly reducing the analyst's time for performing these calculations. Because

it is based on the source biasing and weight window techniques, the method is practical and features statistical

reliability and general applicability. In addition, the method does not in anyway restrict the accuracy of the explicit

three-dimensional continuous energy and angular MC method



V. ON-GOING WORK

The limitation to this approach is the requirement of an SN adjoint solution. The determination of the adjoint

function requires a reasonably detailed SN calculation, which can be a di�cult task by itself. Therefore, we

are currently developing strategies for generating input �les for SN calculations directly from MCNP input �les.

Coupling the work described in this paper with such strategies will lead to the automation of the generation and

application of the adjoint function for VR in MCNP calculations.
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