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ABSTRACT

The deterministic adjoint function is employed to accelerate Monte Carlo reactor cavity dosime-
try calculations. Equations for calculating source biasing parameters and weight window lower
bounds based on contribution to detector response are developed. The facilities to calculate and
use these parameters have been incorporated into the MCNP code. Use of the adjoint function
is shown to increase the calculational e�ciency of the reaction rate calculation by more than a
factor of 4 and improve the statistical convergence, with respect to our best manually optimized
model. Further, the use of the adjoint function does not require the intuition, guess work, and/or
iterative process typical of current variance reduction techniques.

I. INTRODUCTION

Reactor cavity dosimetry is performed to benchmark models for pressure vessel uence calcu-
lations. These calculations are used to estimate RPV integrity and provide a basis for plant life
extension, and therefore, their accuracy is of great importance. In the past, the discrete ordinates
method was used, almost exclusively, to perform these calculations. More recently, the Monte
Carlo method, which is considered to be the most accurate method available for solving radiation
transport problems, has been employed for this application in an e�ort to better understand the
uncertainties associated with the discrete ordinates method and to attempt to benchmark the
discrete ordinates calculations.[1-3] However, due to its nature of simulating individual particles
and inferring the average behavior of the particles in the system from the average behavior of the
individually simulated particles, the Monte Carlo method is extremely computationally expensive.
In fact, for many reactor applications, as well as medical and nuclear-well logging applications,
the computer time required by the Monte Carlo method is still considered prohibitive and/or
impractical. Therefore, for di�cult problems such as the cavity dosimeter calculation, where the
probability that a particle contributes to the detector of interest is small, some e�ective means of
variance reduction must be used to accelerate the calculation. In fact, for problems of this magni-
tude the analog Monte Carlo method is not capable of producing results with su�cient precision
in a realistic amount of time.

To make Monte Carlo calculations computationally practical we employ our basic knowledge
of the physics of the problem and the available variance reduction techniques to coerce important
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Figure 1: One Octant of the Three Mile Island unit 1 (TMI-1) Reactor

particles to contribute to the quantity of interest (e.g., reaction rate, dose, etc.). Most variance
reduction techniques, however, are not straightforward to use since they depend on various param-
eters which vary signi�cantly with problem type and objective. Thus, one typically engages in an
iterative process to develop the variance reduction parameters and arrive at some acceptable level
of calculational e�ciency. Finally, it should be mentioned that automatic importance generators,
such as the weight window generator in MCNP[4], are currently available, but they are restricted
by their statistical nature and are of limited use in multi-dimensional deep-penetration problems.
Therefore, it is apparent that a deterministic means of generating problem dependent importances
would be very bene�cial for applying the Monte Carlo method to large problems.

It has long been recognized that the adjoint function (i.e., the solution to the adjoint Boltzmann
transport equation) has physical signi�cance as a measure of the importance of a particle to some
objective function (e.g., the response of a detector)[5]. It is this physical interpretation that, in
theory, makes the adjoint function well suited for use as an importance function for biasing certain
types of Monte Carlo calculations. Speci�cally, problems involving a small detector region(s) at
a large distance from the source, such as the reactor cavity dosimetry calculation which attempts
to estimate reaction rates at a distance of approximately 350cm from the core centerline. The
problem is illustrated in Fig. 1

In this paper, we investigate the procedure and subsequent bene�ts of using the deterministic
adjoint (importance) function to accelerate the reactor cavity dosimetry calculation.



II. THEORY

The adjoint operator Hy is de�ned by the following identity[5]

h	yH	i = h	Hy	yi

where hi signify integration over all the independent variables. From this identity, we can show
that the response R at some detector with some objective function �d is given by

R = h	yqi = h	�di; (1)

where q is the source density and 	y is the adjoint function.

For the acceleration of the Monte Carlo calculation, we use 	y to more e�ciently sample the
source of particles as well as the transport of the particles through the medium. To this end, we
calculate a biased source energy and spatial distribution qb(r; E) based on the detector response
from the source[6]

qb(r; E) =
R(r; E)
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Physically, the numerator is the detector response from the space-energy element (dV; dE), and
the denominator is the total detector response. Therefore, the ratio is a measure of the total
contribution to the detector response from the space-energy element (dV; dE).

Since we are biasing the source variables, the statistical weight of the source particles will have
to be corrected such that

qb(r; E) W (r; E) = q(r; E): (3)

Substituting (Eq. 2) into (Eq. 3) and rearranging, we obtain the following expression for the
statistical weight of the particles W
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To use the weight window facilities within MCNP, we need to calculate weight window lower
bounds Wl such that the statistical weights de�ned in (Eq. 4) are at the center of the weight
windows (intervals). The width of the interval is controlled by the parameter Cu, which is the
ratio of upper and lower weight window values (Cu = Wu

W
l

). Therefore, the weight window lower
bounds Wl are given by
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Since we derived expressions for the source biasing parameters and weight window lower bounds
in a consistent manner, the statistical weights of the source particles (W (r; E) = q(r;E)

q
b
(r;E)

) are

within the weight windows as desired.

It is important to note that if the statistical weights of the source particles are not within
the weight windows, the particles will immediately be split or rouletted in an e�ort to bring
their weight into the weight window.[4] This will result in unnecessary splitting/rouletting and a
corresponding degradation in computational e�ciency.



III. METHODOLOGY

As mentioned, utilization of the adjoint function to increase the e�ciency of a Monte Carlo cal-
culation is not a new idea,[6] but it is also not typically considered practical for realistic problems.
This is due to the fact that the manual procedure for using the deterministic adjoint function to
accelerate a Monte Carlo calculation may proceed as follows:

(1) model the problem with a Monte Carlo transport code,

(2) model the problem with a deterministic (e.g., discrete ordinates) code, and calculate the
adjoint function for an appropriate response function (adjoint source), and

(3) overlay the spatial and energy dependent adjoint function onto the Monte Carlo model in an
appropriate manner.

The �rst of these three tasks is obviously necessary to perform any Monte Carlo calculation,
and is described in some detail for this particular application in Ref. [3]. However, the Monte Carlo
modeling in this case is greatly simpli�ed in the sense that it does not require the implementation
of any variance reduction techniques. The second task overlaps the �rst task to some degree, but
still requires a signi�cant amount of work related to cross-section and spatial mesh preparation.
The details of the discrete ordinates model can be found in Ref. [7]. For many reactor applications,
however, deterministic models may already exist, thus eliminating the most tedious of the above
steps.

In this paper, we concentrate on performing the third task, and evaluate the bene�ts of this
technique with respect to manually optimizing the calculation. Our reference, or manually opti-
mized, model takes advantage of the following variance reduction techniques: energy cuto�, source
variable (space, energy, and angle) biasing, weight windows, and exponential transformation. With
a crude approximation for the initial weight window values, the weight window generator was used
in an iterative process to develop weight window values for two energy groups. Acceptance of the
�nal set of weight window values was dictated by calculational e�ciency and proper statistical
convergence.

For this application, the 63Cu(n,�), 58Ni(n,p), and 54Fe(n,p) reaction rates (responses), which
have thresholds energies of �5.0, �1.0, and �1.0 MeV, respectively, are all of equal interest, and
thus we calculate a representative reaction rate as a weighted average of each of the normalized
reaction rates based on the width of the energy range a�ected and the sensitivity to that energy
range. Using this representative response function, we can generate an importance function that
will simultaneously optimize the calculation for all three reaction rates, and thus avoid calculating
an importance function for each individual response that would require three separate Monte Carlo
calculations.

With this representative response function as the adjoint source, we calculate a 2-D R-� adjoint
function with the DORT[8] code using the SAILOR[9] P3 47-group library and a symmetric S8
quadrature set. Figure 2 shows this adjoint function distribution for energy group 3 (10.00-12.14
MeV). A modi�ed version of MCNP reads the adjoint function from the standard DORT binary
ux �le, couples the original source distributions with the adjoint function to generate the source
biasing parameters and spatially averaged weight window lower bounds, and then performs the



Figure 2: Adjoint Function Distribution for Energy Group 3 (10.00-12.14 MeV)

transport calculation. Within MCNP the source spatial distribution is represented by a probability
distribution function at 24 axial locations in each fuel pin of the last two (peripheral) layers of
assemblies and the energy distribution is based on an equivalent �ssion spectrum for the U and Pu
�ssile isotopes.[10] The following approximations/assumptions are made in this process: (1) the
axial behavior for the adjoint function is approximated with a cosine distribution, (2) the MCNP
geometry has been previously sub-divided to facilitate the use of spatial weight windows (i.e.,
cells in areas of rapidly changing importance are less than �2 mean-free-paths thick), and (3) to
represent the spatial dependence of the energy biasing parameters, the energy dependent adjoint
function is averaged over each source cell, and a dependent source energy biasing distribution is
calculated for each source cell. No modi�cations to the source routines are necessary, since the
capabilities to handle source variable biasing and dependent source distributions are standard
features of the MCNP code.

IV. DISCUSSION OF RESULTS

Since the focus of this paper is on the acceleration of the calculation and not on the calculation
itself, the interested reader is referred to the references for discussions regarding the accuracy
of results with respect to measurements and discrete ordinates calculations, as well as sensitiv-
ity studies related to various aspects of this calculation. However, to provide some idea about
the accuracy and to demonstrate that the acceleration technique does not bias the calculation,
calculated-to-experimental (C/E) ratios, corresponding to ENDF/B-V transport and SAILOR
dosimetry cross-sections, are given in Table 1. The di�erences between C/E ratios calculated with



Table 1: C/E Ratios at the Cavity Dosimeter for TMI-1

Manually Optimized Adjoint Importance
Reaction C/E FOM C/E FOM
63Cu(n,�) 0.905 (0.022)a 3.7 0.928 (0.015) 18
54Fe(n,p) 0.965 (0.023) 3.5 0.977 (0.013) 21
58Ni(n,p) 0.947 (0.020) 4.5 0.953 (0.013) 24

a 1� uncertainties

the manually optimized model and with the adjoint importance function are within the statistical
uncertainties. Table 1 also lists the associated �gure of merits (FOM) [FOM = 1=(RE)2T ], where
RE is the relative error, and reveals that the use of the adjoint importance function increases the
calculational e�ciency by more than a factor of 4 with respect to our best manually optimized
importance function.

Without the use of variance reduction techniques, the calculation of reaction rates at the cavity
dosimeter with su�cient precision is not feasible. However with the use of the adjoint function,
the computer time required by the MCNP model to calculate the reaction rates at the ex-vessel
cavity dosimeter with 1� uncertainties of less than 3% is �1 hour on an IBM RISC/6000 model
370. This behavior is demonstrated in Fig. 3 which plots relative error and Cp

T
(where C is a

constant and T is computer time) versus computer time for the three reaction rates of interest.
The two sets of curves in Fig. 3 correspond to calculations performed with di�erent importance
functions; namely, the manually optimized importance function generated with the assistance of
the weight window generator (2 energy groups) and an importance function derived from a 2-D
adjoint function distribution (18 energy groups) using the representative response function.

It is important to note that the relative error RE follows the expected behavior predicted by
the Central Limit Theorem (RE � 1p

N
� 1p

T
; where N is the number of particle histories), which

indicates the validity of the calculated relative errors. Moreover, the use of the adjoint importance
function clearly leads to smoother statistical convergence, thereby producing more reliable error
estimations.

It should be noted that the aforementioned computer times do not include the discrete ordinates
adjoint calculation. Also, for the purpose of comparison, the forward reaction rate calculation (18
group, E > 1:0MeV ) with discrete ordinates (DORT) requires 3 individual calculations, R-�,
R-Z, and R; which require approximately 40 minutes of total computer time.

V. CONCLUSIONS

The usefulness of the adjoint function for biasing Monte Carlo reactor cavity dosimetry calcula-
tions has been demonstrated, and a procedure for doing so has been briey discussed. The adjoint
(importance) function has been shown to increase the e�ciency of the reaction rate calculation by
a more than a factor of 4 and improve the statistical convergence. Further, the use of the adjoint
function does not require the intuition, guess work, and/or manual intervention typical of current
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Figure 3: Relative Error vs Computer Time

variance reduction techniques (or importance function generators), thus signi�cantly reducing the
analyst's time for performing these calculations.

In reference to the use of variance reduction techniques in Monte Carlo, it is often said that
\their use is more of an art than a science." However, the use of the adjoint function, as described
in this paper, is based on physics (science), and thus it can reduce and even possibly eliminate
the art from many Monte Carlo calculations.

VI. ON-GOING DEVELOPMENT

In an e�ort to develop a useful tool that will take full advantage of the adjoint function for
biasing Monte Carlo deep-penetration problems, the following capabilities are being investigated
and/or implemented: (1) automatically superimposing the discrete ordinates spatial mesh onto
the MCNP problem in a transparent and e�cient manner, (2) utilization of the angular dependent
discrete ordinates adjoint function, and (3) automatic discrete ordinates mesh generation from the
MCNP combinatorial geometric description.
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