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ABSTRACT

This report has been prepared to review relevant background information and provide technical discussion that will
help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water
reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC
Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a
means to obtain input/feedback from industry and other interested parties. The review and discussion in this report
are based on knowledge and experience gained from work performed in the United States and other countries.
Current regulatory practice and perceived industry needs are also reviewed as a background for prioritizing
technical needs that will facilitate safe practice in the use of burnup credit. Relevant physics and analysis
phenomenon are identified, and an assessment of their importance to burnup credit implementation is given. 
Finally, phenomena that need to be better understood for effective licensing, together with technical issues that
require resolution, are presented and discussed in the form of a prioritization ranking and initial draft program plan.
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1  INTRODUCTION
 

In the past, criticality safety analyses for commercial light-water reactor (LWR) spent fuel storage and transport
canisters1,2 assumed the spent fuel to be fresh (unirradiated) fuel with uniform isotopic compositions corresponding
to the maximum allowable enrichment.  This "fresh-fuel assumption" provides a well-defined, bounding approach
to the criticality safety analysis that eliminates all concerns related to the fuel operating history, and thus
considerably simplifies the safety analysis.  However, because this assumption ignores the decrease in reactivity as
a result of irradiation, it is very conservative and can result in a significant reduction in spent nuclear fuel (SNF)
capacity for a given package volume.  References 3%5 and numerous ensuing publications have demonstrated that
increases in SNF cask capacities from use of burnup credit can enable a reduction in the number of casks and
shipments, and thus have notable financial benefits while providing a risk-based approach to improving safety. 
The concept of taking credit for the reduction in reactivity due to fuel burnup is commonly referred to as burnup
credit.  The reduction in reactivity that occurs with fuel burnup is due to the change in concentration (net reduction)
of fissile nuclides and the production of actinide and fission-product neutron absorbers.

In contrast to criticality safety analyses that employ the fresh-fuel assumption, credit for fuel burnup necessitates
careful consideration of the fuel operating history, additional validation of calculational methods (due to prediction
and use of SNF nuclide compositions), consideration of new conditions or configurations for the licensing basis,
and additional measures to ensure proper cask loading.  For pressurized-water-reactor (PWR) fuel, each of these
four areas have been studied in some detail over the last decade and considerable progress has been made in
understanding the issues and developing approaches for a safety evaluation.  However, a consensus has not been
reached on how to answer such questions as:  What constitutes adequate validation?  How does one select the
appropriate axial burnup profile for the licensing analysis?  How should the variation/uncertainty in operating
histories, fuel design, and SNF composition be quantified and incorporated in the safety analysis?  This report will
review the status of technologies related to burnup credit and identify the phenomena, technical issues, and related
licensing considerations that need to be addressed in order to facilitate the implementation of burnup credit into the
licensing of transport and storage casks. 

A process called Phenomena Identification and Ranking Tables (PIRT) has been used by the NRC Office of
Regulatory Research to identify phenomena and prioritize their importance in helping to resolve a broad technical
issue.  The purpose of this report is to provide a baseline document with which to initiate the PIRT process for
burnup credit.  Thus, this report will propose phenomena and technology issues deemed important to effective
burnup credit implementation and propose a table that prioritizes the areas where technical resolution is needed. 
The phenomena and technology issues, as well as the ranking table, can be updated as additional input and feedback
is obtained from industry and regulatory participants in the PIRT process.  Although consensus on PWR issues
may be achieved relatively quickly within the PIRT process, the current knowledge relative to the application of
burnup credit for boiling-water-reactor (BWR) fuel or mixed-oxide (MOX) fuel will likely prolong consensus-
building for those topics.

Section 2 of this report provides a review of the application areas where burnup credit has been, or is being,
considered for use in the safety basis for operations.  The purpose of this review is to provide some common
understanding of the different approaches to help facilitate comparative discussions that may arise during the
current PIRT process, which will focus on cask storage and transport.  Section 3 presents a review of past and
current technical studies related to burnup credit to help provide a background for the source of technical
information included in this document.  Section 4 discusses the parameters and physics issues identified as
important to burnup credit implementation, while Section 5 discusses technical and licensing issues.  Section 6
prioritizes the parameters, phenomena, and issues that need to be investigated and/or resolved to expedite
implementation of burnup credit.  Criteria used to establish the priorities are also discussed in Section 6.  A recent
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evaluation of burnup credit programs by country and their relevance to the ensuing PIRT process is given in
Appendix A. 
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2  REVIEW OF APPLICATION AREAS

As indicated in the Introduction, this report and the ensuing PIRT process will focus on the implementation of
burnup credit in dry cask storage and transport.  However, an understanding of the manner in which the burnup of
spent fuel has been considered in other applications may be beneficial & particularly since the implementation of
burnup credit in spent fuel pools is significantly different than the methodology proposed and used to date in cask
transport and storage.  This section provides such a background review.
 

2.1 Reactor Operations

Accurate prediction and understanding of the changing nuclide inventory as a function of burnup is a necessity to
safe and efficient operation of a nuclear reactor.  Major efforts have been expended by the nuclear industry to
ensure that the changing isotopic compositions of fuel assemblies in an operating reactor are properly accounted for
and that effective analysis methods are available to "follow" and predict operating conditions for the reactor. 
Of primary interest is the integral effect (i.e., neutron multiplication) of the changing SNF inventory.  The analytic
methods used in reactor operations have traditionally been based on geometric and physics approximations
(primarily applicability of neutron diffusion theory) to the Boltzmann radiation transport equation, but have been
made increasingly reliable with continuous feedback experience (i.e., integral validation) gleaned from a 40-year
period of operating commercial LWRs in a controlled environment.  However, the analysis methods used for
calculation of the effective neutron multiplication factor (keff) in commercial LWR operations are typically not
applicable for out-of-reactor situations due to such problems as geometry modeling restrictions or the increased
importance of angular scattering or leakage.  In addition, the nuclide inventory provided by the reactor core-
following codes has historically not included many of the nuclides important to prediction of keff in out-of-reactor
operations.  

2.2 Pool Storage

Storage of spent fuel in underwater racks at reactors has been standard practice in the United States since the start
of the nuclear industry.  Spent fuel pools (SFPs) at reactors are licensed under 10 CFR 50 and represent a
controlled facility operated in conjunction with the reactor operation.  In lieu of credit for boron in the water, the
NRC Office of Nuclear Reactor Regulation has licensed use of burnup credit for many years in borated SFPs at
PWR plants.6  The general approach used in the United States apparently seeks to blend the experience and
reliability from the reactor core-following codes with the out-of-reactor analysis requirements for criticality safety
(e.g., ANSI/ANS-8.17).  The SNF inventory subsequent to decay of the short-lived 135Xe isotope is typically used
within a storage pool geometry to determine a fresh fuel enrichment that provides the same reactivity as the SNF
inventory.  This "equivalent" fresh fuel enrichment is then used within a criticality safety analysis code to perform
the actual safety analysis for the pool. Little or no validation of the isotopic inventory prediction via comparison
with SNF chemical assays is performed; instead, the reliability of the analysis approach in performing core-
following calculations is considered to be adequate.  Similarly, validation of the cross-section data, as typically
provided by critical experiments, is limited to the fresh fuel nuclide inventory. 

The current burnup credit approach for SFPs hinges on the adequacy of the process to determine the SNF-
equivalent fresh fuel assembly enrichment as well as the proper use of the equivalence information within
environments that provide similar neutronic characteristics.  Until recently, this general process had been used to
obtain burnup credit in PWR SFPs where credit for the soluble boron is taken only for postulated accident events.
Recently, however, credit for soluble boron up to 5% in reactivity has been allowed by the NRC.6 
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Based on the information available to the authors of this report, true "burnup credit" for BWR storage pools (where
there is no soluble boron) has not been licensed; instead, the approach has been to obtain an equivalent fresh fuel
enrichment associated with the peak reactivity anticipated for the BWR fuel during the depletion process (reactivity
initially increases early in life due to depletion of the gadolinium absorber in the assembly). 

2.3 Transport and Storage Casks

The requirements for transport and dry storage (as opposed to wet storage in a pool) of SNF have their own set of
regulations, which are included in 10 CFR 71 and 72, respectively. Both regulations are the responsibility of the
NRC Office of Nuclear Material Safety and Safeguards.  Neither regulation has any specific requirement that
would prevent burnup credit from being implemented in the safety analysis.  In the case of dry spent fuel storage,
water in-leakage to the cask during storage is not considered credible; thus, burnup credit for PWR fuel is not
typically necessary since the only flooded condition corresponds to fuel loading and unloading, where soluble boron
in the water may be used for reactivity control.  Soluble boron is not present in BWR SFPs, and thus for fuel
loading or unloading at a BWR, negative reactivity associated with soluble boron is not available. However, the
reactivity of BWR assemblies is less than that of PWR assemblies, and increased cask loadings have been
accomplished to date without burnup credit. 

At some point the spent fuel must be transported over public roads from the reactor to a common storage or
permanent disposal location, and the regulatory practice for transport is that water in-leakage be considered in the
evaluation of a single cask.  Consequently, spent fuel canisters planned for use in transport must be shown to
maintain adequate sub-criticality margin when flooded with fresh water.  It is not desirable to have separate spent
fuel canisters for storage and transport; thus canisters designed for use with both storage and transport casks
(or overpacks), have become the standard industry practice.  As a result, the regulatory requirements for transport
directly impact storage practice.  For example, it is not desirable to load spent fuel into a canister and seal-weld the
canister for storage if the contents are not allowable for transport  Therefore, the need for burnup credit in casks is
driven by the regulatory requirements for transport. 

Since 1985 significant effort has been devoted to investigating the operational merits (reduced number of shipments
and cost savings) and technical issues (performance of safety analysis) associated with burnup credit for cask
transport and storage of LWR spent fuel. The efforts have focused on PWR fuel with only scoping studies
performed for BWR fuel. To date, there is no regulatory experience in the United States with licensing a LWR cask
with burnup credit.  However, the NRC has recently issued interim staff guidance (ISG8)7 which provides
recommendations for implementing burnup credit in the safety analysis of  PWR casks.  The recommendations
within ISG8 limit the burnup credit to that available from actinide-only nuclides for SNF with assembly-average
burnup of 40 GWd/MTU or less and a cooling time of 5 years.  The ISG8 recommendations allow spent fuel with
burnup values greater than 40 GWd/MTU to be loaded in a cask, but burnup to only 40 GWd/MTU can be
credited.  Initial enrichments up to 5.0 wt % 235U (special provisions/penalties are required for enrichments beyond
4.0 wt % 235U) are allowed. However, assemblies with  burnable absorbers are not allowed.  The approach to
implementation of burnup credit in safety analysis for transport packages will involve predicting the nuclide
inventory with a code that will provide adequate individual isotopic information for SNF and subsequent use of that
inventory to determine the keff value.
 
The ISG8 recommends that the analysis methods used to predict the SNF isotopics and keff value be validated
against measured data and that efforts be made to identify and/or bound potential uncertainties caused by variation
in reactor operating histories, lack of measured data for validation, and the spatial variation of the burnup within
the assembly (axial and horizontal).  Further, the ISG recommends the use of a measurement prior to or during the
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loading procedure to ensure that each assembly is within the loading specifications for the approved contents (e.g, a
burnup measurement).  The recommendations for a bounding approach and pre-shipment measurements are
consistent with the international regulations for transport of fissile material8 which directly address transport of
irradiated nuclear fuel.

2.4 Permanent Disposal

Licensing requirements for permanent disposal of SNF at a proposed repository at Yucca Mountain are provided in
10 CFR 63.  Proposed changes to the regulations allow the potential for criticality in the repository to be considered
in light of the probability of occurrence and the consequences to the total system performance.  The quantity of
fissile material being considered for disposal together with the uncertainties associated with degradation and
movement of the material over geological time frames makes this a practical approach that will provide safety to the
public.  Thus, the licensing approach9 being considered seeks to identify credible (above a certain probability of
occurrence) configurations with a potential for criticality and explore the consequences that might result from such
critical events.  For intact fuel, the licensee is seeking to evaluate the configurations using SNF isotopic
compositions that include both actinides and stable fission products.  Additionally, burnup credit for both PWR and
BWR fuel is being considered.  The analysis and validation approach for disposal waste packages is more similar to
that considered for transport casks than the approach used for SFPs.

2.5 Discussion and Comparison of Approaches

The approaches used to resolve a technical problem are typically based on historical precedence and experience in
the subject area.  In the United States, the need to consider burnup credit came initially to the SFPs, when the
absence of disposal and reprocessing options caused the capacity requirements to continually exceed initial design
expectations.  Credit for burnup or soluble boron was needed to extend the pool capacity.  At the time, the Advisory
Committee on Reactor Safety considered potential loss of soluble boron to be of greater concern than any
uncertainties associated with implementing burnup credit.  Thus burnup credit was implemented in a fashion
consistent with the analysis and operations experience within the reactor industry and NRC.  Considerations for
future implementation of the approach in out-of-reactor applications such as transport do not seem to have been
considered.

Similarly, when efforts were initiated to consider burnup credit implementation in transport, the approach
immediately sought to meet the requirements of the ANSI/ANS standards for criticality safety while extending the
safety analysis to use a "bounding" spent fuel inventory.  A comparison of the regulatory guidance for the criticality
safety analyses of SNF storage in SFPs with that of SNF in transport reveals significant differences.  The approach
used for burnup credit in SFPs does not provide for a separate assessment of the individual sources of analysis
uncertainty, but rather allows the presence of borated water and administrative controls to provide a necessary
margin to eliminate the need for such an assessment.  On the other hand, burnup credit criticality safety evaluations
for dry storage and transport are required to assess individual sources of uncertainty and ensure consideration of
these uncertainties in the safety evaluation.  The reason for this difference may be attributed to the fact that the
SFPs provide a protected, controlled environment within the confines of the reactor site where the fuel was typically
used and where responsibility for safety resides.  However, in transport, the licensed cask can be used in any
facility and transported over public roads, where the environment is more unpredictable and the controls less
reliable. 
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The regulatory allowance of burnup credit in SFPs, including credit for fission products, seems to be partly
justified10 by the presence of soluble boron in the spent fuel pool.  The reactivity margin associated with the soluble
boron is inherently credited in SFP burnup credit analyses to account for uncertainties associated with the
utilization of burnup credit.  This approach is justified on the basis that there is typically sufficient soluble boron
present in PWR SFPs (soluble boron concentrations of ~2000 ppm are common) to maintain subcriticality even if
an entire storage rack intended to accommodate burned fuel were misloaded with fresh fuel assemblies of the
highest allowable enrichment.  Note that recent allowance for partial soluble boron credit (up to 5%) reduces this
associated margin. 
 
Because of the reasons stated above, burnup credit criticality analyses for SFPs are not required to address the
numerous issues that have been identified in the context of burnup credit for transportation.  The following
paragraphs briefly review the three major differences between the requirements for criticality safety analyses for
SFPs and cask storage and transport.  In the comparison noted below, which highlights the added constraints for
burnup credit in transportation, the allowances for SFP analyses are all justified by the presence and control of
soluble boron.

The first notable difference between the two NRC guidance documents for pool storage6 and dry storage/transport7

is the selection of nuclides used in the implementation of burnup credit. SFP analyses are allowed credit for all
nuclides except 135Xe without explicit consideration of uncertainties in the calculated nuclide concentrations or
assurance of their presence (e.g., fission gases).  To account for uncertainties in fuel depletion calculations and
nuclide presence, an uncertainty equivalent to 5% of the reactivity decrement to the burnup of interest (5% of the
reactivity reduction from fresh to the burnup of interest) is suggested as an acceptable assumption.6  In contrast,
proposed burnup credit for dry storage and transport7 may credit only a subset of the available actinides present and
must employ conservative isotopic biases determined from benchmarks of applicable fuel assay measurements. 
In addition, Ref. 7 limits the safety analyses to a single cooling time of 5 years while Ref. 6 allows consideration for
all cooling times.  Thus, SFP analyses are allowed 95% credit for the reduction in reactivity associated with all of
the calculated isotopics (except 135Xe), but analyses for a transport application currently allow only a limited
number of actinides and must substantiate the uncertainty in their prediction via comparison with measurement. 

In regard to depletion calculations, no clear guidance or requirements for bounding depletion parameters, similar to
those suggested in Ref. 11, exist for SFP analyses.  Assemblies that used fixed burnable absorber rods (e.g.,
burnable poison rods and axial power shaping rods) are currently allowed to assume burnup credit in SFPs. 
In addition, assemblies with integral burnable absorbers (e.g., integral fuel burnable absorber and UO2/Gd2O3 rods)
are allowed in SFPs.  Allowance of burnup credit for assemblies with burnable absorber rods or integral burnable
absorbers is not recommended in the current guidance for dry storage and transport.7 

The second major distinction between the approach used in SFPs and that currently proposed for transport and dry
storage is that the safety evaluation for SFPs use fresh fuel with a reactivity determined to be equivalent to spent
fuel at a specified burnup.  Uncertainties are associated with this approach in terms of the effect on the neutron
spectrum (and associated reactivity worth of the poison material) and the geometric conditions under which the
equivalency may be valid.  For example, the fresh fuel equivalent for SNF in unborated water will be different than
that in borated water.  Other illustrations, perhaps extreme, of the uncertainties and concerns have been
documented.12  The finite geometry of a cask in comparison to the near-infinite geometry of an SFP leads to
significant differences in reactivity depending on the location of the assembly within the cask, thus making the
reactivity equivalence approach inadequate for use in cask analysis.  Instead, the criticality safety analyses for
transport and dry storage are currently required to use an SNF nuclides predicted using codes and data validated
against measured isotopic information.  Furthermore, the analysis methodologies for calculating keff must be
validated for the specific nuclides that are credited.  
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The recommendations of ISG8 note that the axial and horizontal variation of burnup within an assembly merit
special consideration be given to the spatial variation of the SNF nuclide inventory such that conservative estimates
of keff are determined in the analysis. Modeling for SFP analyses typically assume uniform axial burnup (modeled
as equivalent fresh fuel), and thus are required to determine and include a reactivity penalty associated with the
axial burnup distribution.6  This penalty is determined based on the comparison of a calculation with uniform axial
burnup (using equivalent enrichment) and a calculation with axial distributed burnup (using equivalent enrichments
for each axial zone).  Unlike analyses for transport and dry storage, use of a bounding axial burnup distribution is
not required.  Further, there are currently no requirements related to horizontal burnup distributions for SFP burnup
credit criticality safety assessments. 

The third significant distinction between burnup credit application in SFPs and transport and storage casks is that
verification of assembly burnup through measurement is recommended prior to cask loading but administrative
confirmation procedures are acceptable for SFP storage.  In both cases, the assembly burnup value used for
comparison to the loading criteria is a percentage of the reactor record burnup value.  Although variations among
utilities are believed to exist, the assembly burnup value used for establishing acceptance for SFP storage is
typically between 90 and 95% of the reactor record value.  For transport and dry storage, the percentage of the
reactor record burnup value will be determined based on comparisons to measurements that can be related to the
burnup. 

The comparison between the burnup credit approaches for SFPs and transport or storage casks is summarized in
Table 1.  These differences can be attributed to (1) the controlled environment and presence of soluble boron in
PWR SFPs and (2) the regulatory requirement to consider in-leakage of fresh water in a transport cask.  A change
in either of these situations would probably alter the approaches and/or need for implementing burnup credit within
the associated application. 

To date the only country that has approved transport casks for use with burnup credit has been France.  Unlike the
United States, the French have used virtually identical approaches for applying burnup credit in storage pools and
in transport casks: the minimum burnup as averaged over any contiguous 50-cm segment of the fuel is applied as a
uniform burnup over the entire fuel length, and only the uranium and plutonium isotopes are considered.  The
advantage of using the same technical approach for all applications (SFPs, transport, storage, etc.) is that it allows
an effective interface of the safety evaluations between the application areas. 
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Table 1  Comparison of regulatory requirements for PWR burnup credit criticality safety assessments in
pool storage, dry cask storage, and transport

Issue Regulatory guidance

Spent fuel poolsa Transport and dry storageb 

Nuclides credited All nuclides except 135Xe, with
    depletion uncertainty equal to 5%
    of the reactivity decrement

Select actinides-only, with
    conservative biases applied to the
    concentrations.

Modeling % fuel Equivalent fresh fuel enrichments Explicit isotopic content 

Modeling % burnup
    distributions

Consideration of axial burnup
    distribution

Bounding consideration of axial and
    horizontal burnup distributions

Validation
    requirements

Criticality code validation with fresh
    fuel isotopics

Validation of criticality and depletion
    methodologies for the specific
    isotopics credited 

Maximum allowable
    burnup

None specified No credit for burnup beyond
    40 GWd/MTU

Maximum allowable
    initial enrichment 

5.0 wt % 235U 4.0 wt % 235U 
    (5.0 wt % with offset penalty)

Fixed burnable
    absorbers

Acceptable Perhaps unclear from the text, but
    intended to be not acceptable

Integral burnable
    absorbers

Acceptable Not acceptable

Requirement for
    burnup
    measurements

No Yes

Cooling time All cooling times allowed 5-year cooling time

aGuidance per Ref. 6.
bGuidance per Ref. 7.
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3  REVIEW OF TECHNICAL STUDIES

Financial and safety benefits to the U.S. nuclear industry were identified in the mid-1980s (see for example, Refs. 3
and 13) and have motivated technical studies directed at understanding the phenomena and parameters important to
implementation of burnup credit for transport of PWR spent fuel.  The United States has been an international
leader in seeking to understand and address burnup credit technical issues (at least analytically), but significant
work has been done in collaborative international studies.  Studies initiated outside the United States are continuing
to increase, largely spawned by a need for burnup credit to allow existing casks to transport fuel with higher initial
enrichments.  The available literature related to burnup credit likely consists of several hundred to more than a
thousand journal articles, conference papers, and reports.  The purpose of this section is to identify the major
efforts that, to date, have provided the key sources of technical information pertinent to this report.     

3.1 Studies in the United States

Prior to 1976, casks in the United States were designed to transport SNF with very short cooling times (90 days).
Since that time the U.S. policy has shifted from one of reprocessing shortly after discharge to one of permanent
disposal in a repository after long decay times in an SFP.  With short cooling times the contents and capacity of an
SNF transport cask are typically limited by thermal and shielding constraints; however, for long-cooling times the
decay heat and radiation source terms are reduced to the point that criticality safety becomes a constraining
limitation if fresh fuel isotopics are used.  Thus, the DOE Office of Civilian Radioactive Waste Management
(OCRWM) initiated a program to investigate the use of burnup credit as a means to significantly enhance the
capacity of a transport package.  Following preliminary studies by both DOE3 and the Electric Power Research
Institute (EPRI)13 a workshop to present and discuss the issues was held in 1988 (Ref. 4), where DOE, EPRI,
utilities, cask vendors, national laboratories, and the NRC all participated.  Although the approaches and degree of
sophistication have evolved, many of the burnup credit issues that are still under discussion today (e.g., axial
effects, depletion modeling parameters, etc.) were presented and discussed at that workshop.  Subsequent to the
workshop, the DOE instigated a major effort to identify and resolve technical issues related to the safety analysis,
operational procedures and facility interface (e.g., pre-shipment measurement), and optimization of PWR casks
designed for burnup credit.  EPRI and the utilities collaborated with the DOE, selected cask vendors, and national
laboratories in an attempt to develop the technical basis and safety analysis approach for implementing burnup
credit.  After several technical exchanges with the NRC staff, the DOE moved forward with a topical report11 that
was initially submitted in 1996 and subsequently revised in 1997 and 1998.  The predominance of the United States 
literature to date has been developed as either background studies performed for, or in direct support of, the DOE
and EPRI efforts to have burnup credit approved for PWR transport packages.  Although the DOE topical report11

provides a good compendium of the technical literature, it is not exhaustive.  More recently, the DOE effort to
implement burnup credit within their topical report9 on criticality methodology for the repository has provided
additional information on burnup credit as applied to BWR spent fuel. 

3.2 International Activities

In the United States the number of packages for SNF are relatively small in comparison with the numbers used in
countries such as the United Kingdom, France, Germany, and Japan, where reprocessing has been practiced. With
an existing fleet of casks and shorter cooling times that constrain design options, these countries have been less
interested in increasing  capacity for new designs than in increasing allowable fresh fuel enrichments for existing
cask designs.  A review of the current status of burnup credit work in each of these countries as it pertains to the
PIRT process is provided in Appendix A. 
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In 1991 the Nuclear Energy Agency of the Organization for Economic Cooperation and Development
(OECD/NEA) initiated a Working Group tasked with the study of burnup credit issues.  The Burnup Credit
Working Group (BUCWG) defines and analyzes computational benchmarks for the purpose of an international
comparison of different computer code/data packages when used in the study of spent fuel analysis.14%18  There has
been significant interest in the BUCWG with active participation from the regulatory agencies, industry, and
research organizations of nine countries.  The large number of  international participants has allowed  comparison
and study of a wide range of codes, data, and methods for each benchmark problem.  To date, the BUCWG has
studied a number of different configurations relevant to burnup credit in light-water reactors.  In many cases these
studies have only confirmed the findings of previous studies performed separately in the United States and other
countries. In addition, the BUCWG has also provided a forum for discussing and understanding various approaches
to the technical issues.   

In 1997 the International Atomic Energy Agency (IAEA) began a task to monitor the implementation of burnup
credit in spent fuel management systems as a means to provide a forum for exchanging information on the national
practices. An excellent summary and country-by-country report of burnup credit implementation in SFPs, transport
and dry storage, and permanent disposal is provided in Ref. 19.  The IAEA is planning a Technical Committee
Meeting for July 2000 to update information on implementation efforts, to allow presentations on regulatory and
validation issues, and to provide time for active discussions and development of recommendations via work groups
on each area (SFPs, transport, and disposal).20

 
In 1991 when the BUCWG was formed, there was a handful of papers relevant to burnup credit at the International
Conference on Nuclear Criticality (ICNC).  The heightened international work interest in burnup credit is evidenced
by the fact that there were more than 20 papers related to burnup credit at the recent ICNC’99 meeting.  The work
being performed by the international community provides a ready source of valuable information for improved
technical understanding, confirmation of findings, and different views to the same issues. 
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4  PARAMETER AND PHENOMENA IDENTIFICATION 

The purpose of this section is to identify the characteristic parameters and physics phenomena that are important to
understanding burnup credit and review the current knowledge as gleaned from the activities described in Section 3. 
A discussion of unresolved issues associated with each parameter or phenomenon is also provided, particularly as it
relates to the current NRC guidance embodied within ISG8.  The degree of resolution achieved and/or needed can
be a subject of some debate & as will likely occur during the PIRT process. 

4.1 Nuclides Important to Burnup Credit 

Spent nuclear fuel contains hundreds of unique nuclides.  The actual reactivity worth of the fuel is a function of the
net neutron production and absorption by all nuclides present.  However, if criticality calculations are performed
based on all fissile nuclides and a limited subset of absorbers, the value of keff calculated is conservative.  To date,
the approach proposed for burnup credit in storage and transport casks has been to qualify calculated isotopic
predictions via validation against destructive assay measurements from SNF samples.  Thus, utilization of nuclides
in the safety analysis process has been limited based on the availability of measured assay data and chemical
characteristics (e.g., volatility) that might cause the nuclide to escape the fuel region.21 

Several studies have been performed to identify the nuclides which have the most significant effect on the calculated
value of keff as a function of burnup and cooling time.3, 21,22    Figures 1%3 provide the results of one study22 which
performed a relative ranking based on the fraction of total absorptions for each nuclide. The adequacy of this
simple ranking approach has been confirmed with more rigorous approaches that obtained the actual change in keff

for an infinite lattice of rods based on a change in each nuclide.21  The relative worth of the nuclides will vary some
with fuel design, initial enrichment, and cooling time, but the important nuclides remain the same.  A recent study
for BWR spent fuel also indicates the ranking of important nuclides changes only slightly in going from PWR to
BWR operating conditions.23  Figures 1%3 indicate that the majority of neutron absorption is caused by only a few
actinide isotopes and, individually, the fission products contribute much less to neutron absorption. For cooling
times of interest to transport and dry cask storage (2 to 100 years), Figures 2%3 indicate that the relative importance
of only a few nuclides change significantly with cooling time.  The buildup of 155Gd and 147Sm from the decay of
other non-absorbing fission products and the decay of 241Pu (14.4 y-half-life) to 241Am contribute to the decrease in
keff as cooling time increases.  The effect of the decay of 151Sm appears to be compensated by the commensurate
buildup of 151Eu.  Based on these and other studies, the nuclides listed in Table 2 are considered to be the prime
candidates for inclusion in burnup credit analyses related to dry storage and transport.  Obviously, 151Sm (90-y
half-life) and 151Eu are a pair, and 151Eu only needs to be considered if the absorption credit for 151Sm must be
maintained.  [Note that although it is a relatively minor absorber, many previous studies have included 135Cs in their
analyses because measured isotopic data currently exist.  Although it can be included in a burnup credit analysis,
its effect on cask reactivity is negligible.21]

Table 2  Most important nuclides in criticality calculations
234U 235U 236U 238U 238Pu 239Pu
240Pu 241Pu 242Pu 241Am 243Am* 237Np
95Mo* 99Tc 101Ru* 103Rh* 109Ag* 133Cs
143Nd 145Nd 147Sm 149Sm 150Sm 151Sm
151Eu* 152Sm 153Eu 155Gd
*Nuclides for which measured chemical assay data is not currently available in the
United States.
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Figure 1  Fraction of neutron absorptions versus cooling time for 4.5-wt %-enriched PWR fuel burned to
50 GWd/MTU (from Ref. 22)
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Figure 2  Fraction of neutrons absorbed by major actinides at various cooling times for 4.5-wt %-enriched PWR fuel
burned to 50 GWd/MTU (from Ref. 22)
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Figure 3  Fraction of neutrons absorbed for major fission products at various cooling times for 4.5-wt %-
enriched PWR fuel burned to 50 GWd/MTU (from Ref. 22)
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As indicated earlier, validation of calculated isotopic predictions against experimental measurements is desirable for
any nuclide upon which burnup credit criticality calculations are based.  Isotopic validation studies using the
SCALE/SAS2H depletion sequence and available measured assays have been  performed for PWR spent fuel24, 25

and BWR spent fuel.26  For BWR fuel, the number of nuclides for which there are measured data is significantly
reduced  and is limited primarily to the actinides of Table 2.26  For the most part, the fission product measurements
available in the United States for PWR fuel is limited to 3%6 measurements, and prediction methods for these
nuclides may not be considered to be fully validated.  This situation is the major reason that only partial or
"actinide-only" burnup credit was considered in the DOE topical report11 and the ISG8.7  The fission product
margin is still present, but since sufficient measured data for isotopic validation do not exist, credit for its negative
worth has not been recommended for inclusion in safety analyses.

Table 3 shows the participant-averaged incremental worth of actinides and fission products as determined by the
OECD/NEA BUCWG in a study15 involving an infinite lattice of fuel pins with an initial enrichment of 3.6 wt %
235U and nuclides nearly identical to those of Table 2.  The results of Table 3 indicate that for these burnup values
the reactivity decrease is roughly 2/3 due to actinides, another 1/3 due to fission products. This finding is consistent
with earlier work27 for infinite lattices. However, it is important to remember that the competing effect of external
absorbers in cask designs will change this ratio for finite cask analysis resulting in the fission products with less
relative worth.  This reduced effect is seen in Figure 4, which is based on a generic rail cask design with 5-year
cooled fuel. This figure shows the reactivity worth of the eleven actinides with measured assay data as identified in 
Table 2 in comparison to the additional worth that can be obtained from: fission products with measured assay data
as identified in Table 2, all the nuclides of Table 2, and all nuclides (approximately 230) for which cross-section
data are available in ENDF/B-V.  The fission products provide less than 1/4 of the total reactivity decrease for this
particular cask design. 

Table 3.  OECD phase IA )k values (actinides are relative to fresh fuel)

30 GWd/MTU 40 GWd/MTU

1-year cooled Actinides 0.1922 0.2492

Fission products 0.1054 0.1248

Total 0.2976 0.3740

5-year cooled Actinides 0.2094 0.2721

Fission products 0.1161 0.1417

Total 0.3255 0.4138

Based on Figure 4, it is not likely that additional work to extend the nuclides used in burnup credit beyond that
identified in Table 2 would be warranted.  However, identification and understanding of the additional margin
available from the SNF inventory not listed in Table 2 may be beneficial. 
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Figure 4  Values of keff for a generic rail cask as a function of burnup using
different sets of isotopic assumptions and 5-year cooling time



Section 4        Parameter and Phenomena Identification

17

4.2 Parameters for Depletion Analysis

It is anticipated that burnup credit will be applied for a wide variety of fuel types, each irradiated under a variety
of reactor operating conditions (temperature, PWR boron concentration, BWR blade/fixed poison usage, etc.). 
If a cask design is intended to accept such a variety of fuel, assumptions that encompass the known variations
must be employed in the depletion calculations to ensure that the nuclide content of the fuel is conservatively
represented.  Several studies21, 28%31 have been performed to assess the effect of depletion modeling assumptions
on SNF nuclide predictions.  In these parametric analyses, calculated nuclide concentrations were used to
calculate keff for infinite SNF pin lattices and generic casks loaded with SNF.  Trends in the neutron
multiplication were then examined as a function of each parameter to determine the conservative direction
(e.g., high temperature vs low temperature) for that parameter, and the magnitude of the effect over a realistic
operating range.  

For each parameter studied in Refs. 21 and 28%31, the sensitivity of the neutron multiplication to changes in the
parameter increase with higher burnups.  Furthermore, with the exception of specific power/operating history
effects, all of the trends discussed below are related to spectral hardening.  Spectral hardening results in an
increased production rate of plutonium from increased fast neutron capture in 238U.   Enhanced plutonium
production and the concurrent diminished fission of 235U due to increase plutonium fission has the effect of
increasing the reactivity of the fuel at discharge and beyond.  The exact mechanisms that result in spectral
hardening for various operating conditions are discussed in each of the following subsections.  Specific power
and operating history effects are driven instead by the balance of the various equilibrium states of the nuclides
present, as a function of power.  These effects are described in more detail in Sect. 4.2.4.

In practice, an operational extreme in one parameter may result in an opposite extreme for a coupled parameter. 
However, simultaneous use of realistic bounding parameter values in a depletion model provides a simple,
prudent approach to the modeling process since it is unlikely that any fuel would be depleted under all such
conditions simultaneously.  

4.2.1 Fuel Temperature

Studies of both BWR and PWR depletion models, 21, 28%31 show a clear trend for increased conservatism (i.e.,
increase in keff value) as the assumed fuel temperature during operation is increased.  It is believed that at higher
fuel temperatures, resonance absorption in 238U is increased due to Doppler broadening, resulting in spectral
hardening and increased plutonium production.  The effect is burnup dependent, increasing linearly with
increasing burnup.  Thus, conservative SNF nuclide inventories are predicted by assuming an upper estimate of
fuel temperature during depletion calculations.  The bounding case is for high-burnup fuel and Ref. 21 shows that
the reactivity worth of temperature change is on the order of 5 pcm/K (pcm = percent mill = 10-5  )k/k) for an
infinite lattice of PWR fuel pins and 4 pcm/K for a generic cask.28  Ref. 30 shows similar behavior for infinite
lattice of BWR fuel.  Thus, use of the maximum pellet-averaged  temperature in the depletion analysis should be
acceptable for PWR and BWR depletion analyses.  Although a value of 1000 K would seem appropriately
conservative to cover normal PWR reactor operations, a reference industry report establishing a defensible value
for PWR and BWR operations would be beneficial to facilitate future safety analyses.
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4.2.2 Moderator Temperature/Density

As with fuel temperatures, calculations performed with varying moderator temperatures show that nuclide
compositions are most conservative with respect to neutron multiplication when calculated assuming an upper
bound on moderator temperature (e.g., core outlet temperature).21, 28%31  Although the mechanisms are different,
the net effect is the same.  In a PWR, as the moderator temperature increases, the moderator density decreases. 
Decreased density results in reduced moderation, which result in higher average energy neutrons and spectral
hardening.  The response is close to linear, but has a slight exponential shape with increasing moderator density
(due to the fact that water density is not linear with respect to temperature).  The reactivity effect also increases
with increasing burnup.  For the bounding case of high-burnup fuel, Ref. 21 shows a reactivity worth of about
90 pcm/K for an infinite lattice of  PWR fuel pins and Ref. 28 indicates 35 pcm/K in a cask environment. 
In general, however, the variation in temperature and corresponding density is relatively small in a PWR design.
Thus, use of the maximum core outlet temperature (e.g., 600 K) is recommended; however, a reference industry
report that would help establish the limiting value for normal (and perhaps off-normal) reactor operations would
be beneficial. 

Spectral hardening resulting from decreased moderator density is intentionally applied in the control of a BWR. 
However, the net effect is unchanged from the effect discussed for PWR designs.  In BWR systems, moderator
temperatures change very little axially once boiling begins in the flow channel.  However, reactor operation
allows significant variation in axial moderator density as the void fraction increases with increasing height. 
The void fraction can change significantly both axially and as a function of time.  Hence, it is more instructive to
study depletion effects as a function of moderator density rather than moderator temperature.  Reference 30
demonstrates that for an infinite lattice of BWR assemblies, kinf increases linearly with decreasing moderator
density and the trend is more pronounced as the SNF burnup increases.  The magnitude of the effect is on the
order of 103 pcm/(g/cm3) for high burnup fuel.  Thus, the highest average void fraction (minimum average
moderator density) would appear to be the simple, bounding value to use for depletion analysis of BWR fuel. 
Since the reactivity of BWR fuel in a cask is driven by the fuel at the top of the assembly, it is anticipated that
using the highest average void fraction should be a prudent, yet practical assumption for the safety analysis. 
However, additional work in this area may be warranted to substantiate the initial findings, and an industry report
that provided an appropriate value for the maximum average void fraction under normal operations would be
beneficial. 

4.2.3 Soluble Boron 

Soluble boron is used to control excess reactivity in PWRs.  Soluble boron concentrations of 1000%1500 ppm
boron are typical at beginning-of-cycle and decrease to 0%200 ppm at end-of-cycle.  Depletion calculations may
model the boron change in steps, or assume an average boron concentration for a full cycle.  Studies have been
performed to assess the effect of the soluble boron concentration used during depletion.21, 28, 31, 32  The results of
these bounding high-burnup calculations show a clear linear increase in reactivity with increased boron
concentration at a rate of approximately 3 pcm/ppm for an infinite lattice of pins and 3.5 pcm/ppm in a cask
configuration.  Again, although the mechanism is different from that which occurs in fuel and moderator
temperature variations, the end result is the same.  Spectral hardening results from the absorption of thermal
neutrons in the moderator by the soluble poison.  As with temperatures, the effect of higher boron concentrations
is more significant with higher burnup values, since more conversion occurs over the fuel cycle.  Use of an
average cycle boron value of 750 ppm should be adequately bounding based on the studies performed; however,
analyses that compare the use of an average value versus actual let-down curves would be informative.  Also,
establishment of a bounding value for the maximum average boron per cycle based on boron let-down curves
would enable more straightforward application of the depletion analyses.
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4.2.4 Specific Power and Operating History

The effect of various operating histories (variations in specific power with time) on the reactivity of spent fuel
has been studied for a limited set of hypothetical power histograms.21, 28, 30  Rather than attempt to determine a
real operating history that would bound all other operating histories, histograms were developed to represent the
key aspects of operating histories (e.g., extended downtime early in life, extended downtime late in cycle, high-
power operation early in life, short intercycle downtimes, long intercycle downtimes, etc.).  Results showed a
wide variability in response due to the significantly different decay rates and equilibrium concentrations for the
nuclides studied.  In general, low-power operation near the end of cycle produces the highest reactivity due to
decreased  fission product inventory.  However, the opposite is true when only actinides are considered for
burnup credit & high-power operation is more conservative at end of life.  Fission product worth is more
sensitive to specific power than that of actinides; thus, when both are present, the net effect is driven by fission
product behavior.  Hence low-power operation toward end of life yields the most conservative estimate of
reactivity.   The net effect is rather small, up to 0.2% )k/k for the operating histories considered.  It appears that
the optimum approach would be to assume a simple continuous-power operating history, and add in a margin to
account for operating-history-induced effects.

The effect of specific power assumed during depletion calculations has also been studied independently of
operating history for PWRs.21, 28  Although an operating history is simply a time-varying specific-power profile, it
is important to understand the effect of the magnitude of specific power when held constant with time. 
Calculations with both actinide and fission product credit show a trend for conservative prediction of fuel
reactivity worth when fuel is burned at lower specific power for a longer period of time for a given burnup. 
The magnitude of the conservatism increases with increasing burnup.  However, the opposite is true for
calculations in which only actinides are considered in criticality calculations.  For actinide-only credit, higher
specific powers result in the most conservative set of isotopics.  The magnitude of the conservatism also increases
with increasing burnup.  The difference in behavior between actinides and fission products is due to the relatively
short decay times of fission product precursors relative to actinides.  An industry report that would help establish
the range of specific powers for normal (and perhaps off-normal) reactor operations would be beneficial.

Recent work30 has shown that for high-burnup fuel with fission products present, the behavior of the SNF neutron
multiplication as a function of specific power departs from a linear response.  For high-burnup fuel, the neutron
multiplication initially increases with increasing specific power, before turning (e.g., in the range of
10%20 MW/MTU) and decreasing as specific power continues to increase.  Thus, there is a  specific power that
maximizes the neutron multiplication for high-burnup fuel with actinides and fission products assumed.  The
phenomenon will require further study to understand and quantify.

As stated above, operating histories are merely variations in operating power over the life of the fuel (downtime
is equivalent to very low-power operation).  Each variation results in a different equilibrium concentration for
short-lived nuclides; similarly, the length of time at a given power level determines the amount of inventory of
longer-lived nuclides that do not have time to come to equilibrium.  In both cases, the final nuclide
concentrations are most sensitive to late-in-life power variations, but the sensitivity of a nuclide inventory to past
exposure history will be directly related to its half-life and removal cross section.  Although the integral studies 
performed to date provide a good basis for recommendations, a study which investigates the behavior of each
nuclide of Table 2, together with variations in the assumed limited set of nuclides applied in criticality
calculations, would be instructive in determining the form and magnitude of limiting operating history effects.
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4.2.5 Fixed Burnable Poisons

Fixed poison rods are commonly used for reactivity control and enhanced fuel utilization in PWRs.  Axial power
shaping rods (APSRs), burnable poison rods (BPRs) and other forms of poison rods are applied in many PWR
designs.  The net effect of poison rods is the same as that of soluble boron, since the same mechanism applies:
preferential removal of thermal neutrons.  However, rod effects are more localized, resulting in localized spectral
hardening, non-uniform burnup across the assembly at a given axial height, and atypical axial burnup profiles. 
In addition, BPRs are effectively depleted in the first third of assembly life.  After this time, the effect of the BPRs
decreases with additional burnup.  Therefore, the impact of the fixed poisons is dependent upon the assembly
exposure prior to BPR depletion, the subsequent accumulated burnup, and possibly the poison loading within the
rods.  Studies to assess the significance of fixed burnable poisons are minimal, but early work13 which compared a
depletion case (4.2 wt % 235U, 36 GWd/MTU, 5-year cooled) with 20 BPRs in an assembly to a depletion case with
no BPRs found that the change in a storage cask keff value was 0.6% higher for the cask fully loaded with
assemblies that had the maximum number of BPRs inserted during the depletion. Indications from this study are
that insertion of a maximum BPR loading in all depletion analyses would be a simple, yet not overly conservative
approach to facilitate allowance for assemblies with BPR rods.

Because of the routine use of these fixed burnable absorbers in current assembly designs, it is apparent that
consideration for their use within a burnup credit evaluation must be investigated.  A study is needed to confirm the
initial findings cited above and to consider the range of boron loadings as well as the discharge time relative to BPR
burnout in various fuel assembly designs.  Guidance on the approach needed to provide a  bounding set of SNF
isotopic data for BPR assemblies should be prepared.

4.2.6 Integral Burnable Poisons

In addition to fixed poisons, integral burnable poisons are also used for reactivity control and enhanced fuel
utilization.  Integral burnable poisons refer to burnable poisons that are an integral part of the fuel within an
assembly.  These include integral fuel burnable absorber (IFBA) rods, in which the fuel pellets have a boron
coating, and UO2/Gd2O3 rods.  Integral burnable absorbers are common in current PWR fuel designs.  Except for
very early designs & typically initial core loadings & all BWR designs use burnable poison rods (UO2/Gd2O3) for
reactivity control.  In the past control blades were also partially inserted for flux shaping.  The net effect of integral
burnable absorbers is the same as that of fixed burnable poisons, since the same mechanism applies:  spectral
hardening due to preferential removal of thermal neutrons.  However, the assemblies are designed such that the
burnable absorbers are effectively depleted in the first third of the assembly life, and as a result, the assembly
reactivity actually increases with burnup to a maximum where the integral absorber is essentially depleted.  This
peaking of reactivity during irradiation is more complex (see Figure 5) than can be covered by a simple parametric
analysis.  However, a better understanding of the controlling parameters is needed in order to establish local criteria
for such assemblies.  Development of a firm understanding of the relationship between integral poisons and
depletion methods is ongoing, and few definite conclusions can be drawn at this point.  However, Reference 30 does
lay the groundwork for future work by comparing one- and two-dimensional depletion methods, and cases with and
without integral poisons present. 

4.2.7 Summary of Depletion Modeling Parameters

Although a wide variety of parameters are included in a SAS2H depletion model, representing in some cases a
relatively broad range of operating conditions, most of the parameters discussed above are similar in the fact that
reactivity effects are driven by spectral changes induced by variations in each parameter.  Increased reactivity is 



Section 4        Parameter and Phenomena Identification

21

Figure 5  Schematic of keff change with burnup for assemblies with and without absorber rods

seen for variations that result in increased spectral hardening.  Whether spectral hardening occurs as a result of
increased thermal-neutron capture in absorber materials or increased fast-neutron absorption in 238U, the net effect
is the same: plutonium breeding is enhanced, and less 235U burnup is necessary for fixed power operation.  Thus, at
end of cycle, fuel burned in a harder spectrum has less effective 235U burnup due to more efficient utilization of 238U
to breed extra fuel.

Nevertheless, spent fuel burnup is more sensitive to some of these parameters than to others.  Table 4 summarizes
the discussion in the preceding paragraphs, including specific power and operating history effects.  For each
parameter, the bounding condition (the state that results in the most conservative estimate of fuel reactivity), the
sensitivity range observed in calculation over a typical range (where appropriate), and a recommended modeling
approach for the parameter are provided.  No specific recommendations for bounding parameters are given. 
Although expected values are listed in the preceding subsections, these values should be confirmed or revised by a
survey of operational data before firm recommendations are made.
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Table 4.  Summary of information on depletion modeling parameters  

Parameter Bounding condition
Estimated
sensitivity Recommended value/model

Fuel temperature 
(Sect.4.2.1)

Highest temperature 4%5 pcm/K Max. pellet-average
    temperature

Moderator temperature     
(PWR) 
(Sect. 4.2.2)

Highest temperature 35%90 pcm/K Maximum core outlet
    temperature

Moderator density (BWR) 
(Sect. 4.2.2)

Lowest density 103 pcm/(g/cm3) Minimum channel outlet
    density

Soluble boron concentration
(Sect. 4.2.3)

Highest concentration 3%3.5 pcm/ppm Maximum cycle-averaged
    concentration

Operating history
(Sect. 4.2.4)

High power late in life
    (actinide-only)

N/A Assume simple operating
    history, with margin 
    of 200 pcm or more

Specific power
(Sect. 4.2.4)

High specific power
    (actinide-only)

N/A High but credible specific
    power

Fixed/Integral burnable
    absorbers
(Sect. 4.2.5, 4.2.6)

Burnable absorbers
    present during
    depletion

N/A May not be excessive to
    assume fixed burnable
    absorbers present, but
    further study is warranted.

4.3 Cooling Time

The 5-year cooling time assumed historically in many burnup credit analyses can be traced back to the early policy
of the DOE Office of Civilian Radioactive Waste Management not to accept fuel for disposal unless it had a 5-year
cooling time (sufficient to reduce radiation sources and decay heat values to levels that facilitate higher-capacity
cask designs).  Fuel discharged from a reactor increases in reactivity for several days due to the decay of short-lived
poisons.  After this point, reactivity decreases continuously with time out to about 100 years, at which time it
begins to increase.  The reactivity continues to increase until a second peak at around 30,000 years, after which
time it begins decreasing again.22  The reactivity of the second peak is always less than that occurring at 5 years. 
This means that an assumed cooling time for 5 years is conservative for any cooling time beyond 5 years.  The
magnitude of the conservatism depends on the initial enrichment and burnup of the fuel.21, 22  Additional
conservatism may be added by basing calculated nuclide compositions on a shorter assumed cooling time period 
(i.e., cooling periods as short as 1 year). 

The effect of cooling time on  keff for an infinite PWR pin-cell lattice is shown in Figure 6 for various burnup and
initial enrichment values. Note that as burnup increases, the effect of cooling time is more pronounced due to the
increased quantity of 241Pu and fission products relative to the remaining inventory.  Reference 22 provides a
comparison of absorption fraction versus burnup and further illustrates this  increase in the negative reactivity 



Section 4        Parameter and Phenomena Identification

23

Figure 6  Plot of keff versus cooling time for various enrichments and burnup
values (from Ref. 21)
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worth from 241Pu decay and fission product absorption.  Since the reactivity of low-burnup fuel at the ends of the
SNF is rather insensitive to cooling time and the reactivity of higher burned fuel decreases significantly with cooling
time, the relative reactivity worth of the ends will increase with cooling time.

From a modeling perspective, it should be recognized that some codes used to predict SNF isotopic information for
use in reactor operation do not always provide predictions of all the individual nuclides created during the depletion
and decay process.  Thus, if sufficient nuclides are not available from the discharge SNF inventory, the inventory of
the nuclides predicted by the decay process will not be correct.  Consequently most approaches used to date for dry
storage or transport cask burnup credit have used point depletion codes which typically include sufficient nuclides
to enable a correct decay calculation.  

4.4 Axial Burnup Profiles

4.4.1 Phenomena Associated with Axial Effects

The dynamics of reactor operation result in non-uniform axial-burnup profiles in fuel with any significant burnup. 
At beginning of life in a PWR, a near-cosine axial flux shape will begin depleting fuel near the axial center of a fuel
assembly at a faster rate than at the ends.  As the reactor continues to operate, the cosine flux shape will flatten
because of the fuel depletion and fission product poisoning that occurs near the center.  However, because of the
relatively high leakage near the end of the fuel, burnup will drop off rapidly near the ends.  Partial length absorbers
or non-uniform axial enrichment loadings can further complicate the burnup profile.  In a BWR, the same
phenomena occur,30 but the burnup profile is further complicated by the significantly varying moderator density
profile and by non-uniform axial loadings of burnable poison rods and uranium enrichment.

Under a fresh fuel assumption, it is reasonable to assume that fuel is uniformly distributed along the length of a rod,
or has discrete axial variations in the case of non-uniform initial loadings.  However, for a spent fuel assembly with
a reported level of burnup, the burnup value is typically an estimate of the axially averaged burnup.  Although it is
possible to calculate nuclide concentrations for the average burnup and assume that the material is uniformly
distributed along the length of the fuel rod, this is contrary to the reality of the true burnup profile that exists in a
spent fuel assembly. 

The fact that there is a difference between the keff value calculated assuming an axially varying burnup profile and
that calculated assuming a uniform (flat) burnup profile has become known as the "end effect."  When assuming an
axially uniform distribution of SNF nuclides, the most reactive region of a fuel assembly is at the axial midplane,
because leakage increases with distance from the center.  However, in reality, the most reactive region of spent fuel
is toward the ends, where there is an optimum balance between increased reactivity due to lower burnup and
increased leakage due to closer proximity to the fuel ends.21  A fairly extensive review of axial burnup distribution
issues that are important to burnup credit criticality safety analyses is presented in Ref. 33.

Participants in the OECD/NEA BUCWG performed criticality calculations for a 3-D infinite lattice of axially finite
PWR pin cells.14  This benchmark endeavored to study the effect of an axial-burnup profile in a multidimensional
model.  Twenty-two cases were analyzed, with varying enrichments and burnups.  A single symmetric burnup
profile was applied, broken into nine non-uniform heights.  Local burnups for each region were assumed by
multiplying a normalized burnup distribution by the assembly-averaged power.  Calculations were performed with
and without the profile, to assess the magnitude of the end effect.  The following items were noted in the results
with respect to the end effect:  (1) the end effect increases with increasing burnup and cooling time; (2) it is most
pronounced when fission products are present; (3) the end effect is negative for low-burnup and short cooling times,
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but becomes positive and of greater magnitude at high-burnup and cooling time; (4) the cross-over from negative to
positive occurs around 25 GWd/MTU when fission products are modeled, and near 30 GWd/MTU when fission
products are not modeled; and (5) the cross-over from negative to positive occurs at slightly higher burnup when
fuel enrichment increases.

The OECD/NEA BUCWG also performed a study of axial burnup effects using a conceptual cask configuration. 
This problem set17 employed the same axial models and isotopics as were used in the initial study,14 but only nine
higher burnup cases were analyzed, with fuel at an enrichment of 4.5 wt %.  The model consisted of a set of 21
assemblies, using axially symmetric spent fuel isotopic specifications but within an axially asymmetric cask. 
Poison-plates were modeled between fuel assemblies.  In general, the same trends noted above for the infinite array
model were also noted in the cask model.  

Early efforts to address the axial end effect attempted to use the approach of the SFPs where a margin was added to
compensate for using a uniform profile.34  However, this approach was abandoned when further analyses
determined the end effect varies with cask design, the nuclides included in the safety analysis, and burnup. 
Depending on the cask design, burnup, cooling time, and fuel assembly irradiation history, positive end effects can
vary up to several percent.35  

In a BWR, the same phenomena come into play.  However, a BWR burnup profile is further complicated by several
factors, including:  (1) axially and time varying moderator density, (2) axially and radially varying fuel
enrichments, (3) axially varying poison rod enrichments, and (4) partial control rod insertion. As discussed earlier,
the reactivity of BWR fuel increases with burnup to a maximum or peak reactivity where the integral absorber (Gd)
is nearly depleted (see Figure 5).  When considering the axial-burnup profile, it becomes apparent that the axial
zones will not reach their peak reactivity simultaneously.  Rather, the integral absorber will be depleted earlier in
the axial zones near the center, and thus, the reactivity will peak at the center while significant integral absorber is
still present at the ends.  Similar to PWR fuel, the axial burnup distribution results in an increasing positive end
effect with increasing burnup.  However, early work30, 36 has shown the magnitude of the reactivity increase
associated with the axial burnup distribution may be larger than that which is typically observed for PWR fuel. 
Therefore, further effort in this area is necessary.

As indicated by the above discussion, the most reactive region of the fuel is going to be at a location near enough to
the ends to take advantage of the lower burnup, but far enough from the ends that leakage is reduced.  This point in
an assembly is going to be sensitive to local conditions (within a few mean-free paths) and the local reactivity will
not be influenced by the shape of the burnup profile outside this limiting region.  In this sense, there are any number
of axial profiles that would be equally conservative, if the local conditions at the peak reactivity region are held
constant.  Therefore, rather than performing large sets of criticality analyses using a broad database of axial
profiles, it may be instructive to study the axial burnup in terms of the theoretical aspects of competing effects as a
means to obtain a better understanding of influence from the profile shape and provide guidance necessary to ensure
a conservative profile.

4.4.2 Profile Database

The true axial-burnup distribution is not known for the majority of spent fuel assemblies that will be loaded in a
cask.  In general, only the average burnup is known and documented in plant records associated with each SNF
assembly.  Thus, to be conservative, one must identify and assume an axial-burnup profile that is realistic but is
limiting in terms of the value of keff associated with the axially varying SNF nuclide compositions.  To date,
attempts to bound PWR profiles21,28,29 have been based on the selection of limiting profiles from a set of calculated
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burnup-dependent profiles obtained from reactor operational data.35,37  No attempt has been made to define a
bounding profile for BWR fuel assemblies due to the lack of a similar database of burnup profiles.

A database of 3169 axial-burnup profiles for PWR assemblies has been developed by Yankee Atomic,37

representing burnup profiles for spent fuel for a number of different assembly designs and operating histories.
These profiles consist of burnups calculated by utilities or vendors for a discrete number (18%24) of axial heights
based on core-follow calculations and in-core measurement data.  Although the profiles in the database are not
measured directly, the use of the same analysis procedures for reactor core-following analyses inspires confidence
that the profiles are representative of the actual fuel burnup.38  The database contains data for fuel discharged up to
the mid-1990s, from three fuel vendors, for 106 total operating cycles, with a nominal (assembly-averaged) burnup
range of approximately 3 to 53 GWd/MTU, and initial enrichments of 1.2 to 4.75 wt % 235U.  The profiles have
been sorted into burnup ranges of roughly 4 GWd/MTU.  For each burnup range, calculations have been
performed34 to determine the most limiting axial-burnup profile.

Existing databases used to determine a limiting axial-burnup profile, such as that described in Ref. 37, certainly
have merit in selecting a conservative profile.  However, the referenced databases are limited to older assembly
designs for PWR fuel only.  If it is desirable to continue to base limiting axial profiles on profiles found to be
limiting from a database, then the existing database must be expanded to include a broader variety of fuel designs,
especially some of the more recent fuel designs.  Furthermore, since control rods and partial-length absorbers can
have a significant effect on axial profiles, a decision must be made whether to include or exclude such conditions in
a database.  Information on the use of control-rod insertion during normal reactor operations would be beneficial to
better study and understand the potential impact on the axial profile and/or the SNF nuclide composition.  Finally,
provisions must be made to allow exclusion of profiles from a database if shapes are suspect due to known
abnormal operating conditions or other considerations.  A potential alternative to an extensive profile database that
encompasses nearly all reactor operating conditions is to use assumed profiles in the safety evaluation and then use
axial measurements of the as-loaded assemblies to confirm acceptance within the safety basis (see Sect. 5.3).  Such
a measurement would also provide a means to detect when assemblies have been exposed to unusual reactor
operations (e.g., extended insertion of control rods).

No attempt has been made to define a bounding profile for BWR fuel assemblies due to the lack of a database of
burnup profiles.  Even though measured axial-burnup distributions for several BWR fuel assemblies for end-of-
cycle conditions are available,39, 40 a database similar to that developed for PWR fuel is needed.  The fact that BWR
fuel assemblies are manufactured with variable enrichments both radially and axially, are exposed to time-varying
void distributions, contain fixed burnable poison rods, and are subject to partial control blade insertion during
operation means that BWR profiles are likely to have more variation than that observed for PWR fuels.  Thus, a
large database may be necessary to capture all of the important characteristics.  Again, no database exists for BWR
profiles, and an industry activity to develop such a database would surely have value in implementation of burnup
credit in cask storage and transport.

Even with access to a reliable, comprehensive database of profiles, the process for selecting the appropriate profile
for use in the safety analysis may be an issue.  Does the conservative profile vary with cask design and/or
conditions?  Does it vary with cooling time?  Answers to these questions require some further study.  To date, the
limiting profile has been obtained by direct solution of fuel assembly configurations for each axial-burnup profile to
be evaluated.34  To accommodate the large number of profiles present in the PWR database,37 simplifications and
approximations in the analytic model were required and the analyses have to be repeated for significant design
changes or variations in the model assumptions.  Perturbation theory provides an alternative approach for
determining the limiting profile from an existing database.  The approach involves adjoint analysis that provide 
importance functions which can be quickly folded with each burnup profile distribution to obtain a figure of merit
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relating the burnup profile to its reactivity worth.  Using the adjoint analysis for each cask design and limiting
configuration, modifications or additions in the profile database can be quickly assessed.  Such a method should be
studied for feasibility.

4.4.3 Axial Modeling Approximations

In any spent fuel assembly, fuel burnup is a continuous function of axial location.  However, in a numerical model,
a depletion calculation must be performed for each of a set of finite burnup regions in the model to estimate the
contents of the spent fuel at that burnup state.  Therefore, in practical application, spent fuel models must apply a
set of discrete burnup intervals in which a constant burnup over each interval is assumed.  As with any differencing
approach, care must be taken to ensure that the spatial discretization is fine enough to capture physical phenomena. 
Sensitivity studies21, 28, 30, 33 have shown that a relatively course axial discretization, typically consisting of 7%11
axial regions, is sufficient to converge on the predicted eigenvalue for a spent fuel system.  However, the axial
discretization used in these studies and elsewhere14, 17 is non-uniform and tailored to the shape of the burnup profile. 
All known spent fuel profiles tend to be fairly uniform over most of the central region, but with significantly
decreasing burnup near the axial ends of the active fuel.  Thus, discrete models of burnup can use one to three
burnup zones to represent the majority of the length of the fuel (central region), but more discrete zones are
necessary to capture the more rapid change in burnup with position near the ends of the fuel. It would be valuable
to safety analysts if there were criteria for determining the number and length of zones required in the model based
on the axial profile being considered.  An example of such criteria would be a zone for each 10% change in burnup. 
Such criteria need to be developed and tested. 

As noted in Sect. 4.4.1, the spent fuel reactivity is a function of both the burnup distribution and axial leakage; thus
the boundary conditions (i.e., assembly or cask conditions at the end of the fuel) may play a role in the strategy for
determining appropriate axial modeling approximations.  Calculations reported to date have been based on simple
axial models with a fixed set of boundary conditions.   Future work should study the effect of extreme boundary
conditions (i.e, highly reflective, high leakage, loss of moderation) and provide recommendations or guidance on the
limiting boundary conditions to assume for normal and potential accident conditions. 

4.5 Horizontal Burnup Profiles

Radial variations in the neutron flux, which are mainly due to leakage at the core periphery, result in a non-uniform
horizontal burnup distribution over the radial extent of the reactor core.   As the reactor operates, the radial flux
shape flattens due to fuel depletion and fission product poisoning near the core center.  However, because of the
high leakage near the core periphery, burnup drops off rapidly near the periphery.  Ultimately, at the end of a cycle,
the individual assemblies located near the center of the core will have a relatively uniform horizontal burnup
distribution, while the assemblies near the core periphery may have a significant horizontal variation in burnup.41 
Thus it is possible for fuel rods on one side of an assembly to have experienced notably less burnup than fuel rods
on the opposite side of the same assembly.

To enhance fuel utilization, assemblies are typically relocated within the reactor core between cycle operations.
These fuel management practices tend to effectively reduce the horizontal burnup gradient in normal discharged
fuel.  However, a periphery assembly discharged after a single irradiation cycle may exhibit a significant horizontal
burnup gradient.41 

A database containing quadrant-wise horizontal burnup gradients for 808 PWR assemblies (W 17 × 17 and B&W
15 × 15) has been prepared,41 and the database has been examined for trends with the number of operating cycles,
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accumulated burnup, and initial enrichment.  No trend with initial enrichment was observed.  However, the
horizontal gradient was shown to be inversely proportional to accumulated burnup and number of cycles, which are
obviously closely related.  In other words, the horizontal variation in burnup decreases with increasing burnup.
Axial variation of the horizontal burnup distribution has not been addressed.

The horizontal variation in burnup is a criticality safety concern in the event that two or more assemblies are placed
in a configuration such that their low-burnup zones are adjacent, thus resulting in an increase in reactivity.11  This
reactivity increase will be greatest in small cask designs & such as truck casks & where radial neutron leakage is
significant.  Although the effect is not expected to be significant in large rail casks and the probability of placing
assemblies in such a configuration is small, this concern must be addressed in burnup credit safety analyses.

Based on the horizontal burnup database, Ref. 11 has somewhat arbitrarily assigned very conservative bounding
values for horizontal burnup gradients to be used in actinide-only burnup credit applications.  Further, these
gradients are to be applied in conjunction with the most reactive loading configuration.  While the proposed
approach will conservatively address the concern related to horizontal burnup distributions, it appears to be
excessively conservative.  Studies should be performed to quantify the level of conservatism associated with this
approach and subsequently assess the value of developing a less-limiting approach.
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5  TECHNICAL AND LICENSING ISSUES

The purpose of this section is to identify and discuss the technical and licensing issues associated with facilitating
the use of burnup credit in storage and transport casks. A discussion of the status of these issues and areas where
additional work may be needed are presented. 

5.1 Validation & How Much Is Needed?

Requirements for validation of codes and data used for criticality safety outside reactors is provided by ANSI/ANS-
8.1.  This standard requires that the calculational method be validated by comparison with "the results of critical
and exponential experiments."  Such a comparison yields information on biases and uncertainties in the
calculational methods and model.  The area of applicability for the calculational method depends on the
characteristics of the measured critical experiments that are considered.  The standard gives no guidance on how to
establish the area of applicability (e.g., which parameters, characteristics, etc. and how similar they should be). 

The process of performing criticality calculations for spent fuel in a burnup credit model for transport or dry cask
storage requires two distinct sets of calculations & the first to estimate the isotopic contents of spent fuel based on
depletion calculations; the second to perform a criticality calculation based on the predicted isotopic contents from
the first set of calculations.  Thus, application of ANSI/ANS-8.1 to burnup credit validation becomes somewhat
complicated by (1) the need to consider the depletion analysis methodology and the criticality analysis methodology
and (2) the lack of spent fuel critical experiments. 

The nature of experimental data appropriate for use in validation of burnup credit analysis methodologies and the
value and applicability of such data have been debated topics for over a decade.  Available (albeit some are
proprietary) experimental data include chemical assays of SNF inventories, critical experiments performed with
fresh fuel in cask-like geometries, reactivity-worth measurements, subcritical experiments, and reactor critical
configurations.  The following subsections discuss each of these sources of measured information and their
potential value to the validation process. 

5.1.1 Chemical Assay Measurements

Radiochemical assay measurements have been made for select spent fuel nuclides, for both PWR42%48 and BWR
fuels.40, 49   The majority of these measurements have been used to determine the biases and uncertainties of
computational methods.24%26  In addition, Ref. 50 is a compilation of sources of radiochemical assay data from these
and other sources.  A very limited amount of assay data for mixed oxide (MOX) spent fuel is available from old
U.S. test programs51, 52 and the more recent ARIANE program coordinated by Belgonucleaire.  Reference 53
describes sources for additional isotopic assays and assesses the completeness of available data describing each set
of measurements.  Appendix A discusses the availability of assay data in other countries. 

Chemical assay data have historically focused on the major actinides within PWR spent fuel.  The actinides of
importance in burnup credit have been measured in 20 or more independent chemical assay evaluations of PWR
fuel.  For most fission product nuclides important in burnup credit (see Table 2), very few assay measurements
have been made.  In general, the available PWR spent fuel assays correspond to older fuel designs and are limited
to less than 40 GWd/MTU and 3.5 wt %.  Additional PWR and BWR spent fuel assays are currently being
performed to support DOE programs, but have not been completed and documented at this time.
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The use of the chemical assays in the validation process involves a comparison of predicted nuclide concentrations
to the measured concentrations.  The depletion model is based on the known in-core history for the fuel sample that
was characterized.  Given a significant number of comparisons, it becomes possible to statistically estimate the bias
and uncertainty in the ability to predict the concentration of a given nuclide.  The bias is obtained by finding the
average difference between computed and measured concentrations for each individual nuclide; the uncertainty
characterizes in a statistical manner the variation of individual comparisons around the mean.24%26  For
conservatism, the total uncertainty should also include statistical uncertainty based on a limited sample size. 
Reference 25 describes an approach for calculating bias and uncertainties such that one has a reasonable confidence
that one can conservatively predict the concentration of a nuclide.  Conservatism is defined in terms of a
concentration that has the effect of maximizing keff for a system.  A second statistical approach is presented in
Ref. 11.  In both of these procedures, calculated biases and uncertainties include any biases and uncertainties
inherent in the experimental measurements.  Thus, there is potential for offsetting errors in the bias, and the
uncertainty may not be properly characterized.  However, this is a random process, and non-offsetting errors would
also be present.

Note that the procedure described above determines the calculational biases and uncertainties for each individual
isotope evaluated.  Simultaneous application of conservative corrections to individual nuclides within a predicted
SNF inventory has potential to be a departure from reality since a correction in one nuclide may be inconsistent,
from a physics standpoint, with a correction in a related nuclide.  Additionally, given the limited number of
chemical assays available, and the range of enrichments and burnups represented by these data, it has not been
possible to clearly establish trends in biases and uncertainties as a function of the governing parameters.  Although
some chemical assay data exist for a moderate range of burnups, other factors also vary (i.e., assembly design,
operating history, poison concentrations, etc.).  Insufficient data prevent the application of a multivariate
evaluation.  Although additional measurements should be pursued where essential (high-enrichment and high-
burnup conditions), the lack of facilities to handle and process spent fuel, combined with the cost of the procedure
itself, will limit the number of samples available for validation in the near future.  Thus, other options that can
provide technical justification for extending the range of the validation and/or interpolating on the range should be
considered in conjunction with new experimental data.

The recent NRC guidance7 provides a method by which burnup credit may be applied for fuel enrichments in the
4%5 wt % range.  However, radiochemical assay data used for the validation of depletion methods are currently
limited to enrichments of less than 4 wt %.  The offset method recommended in Ref. 6 assesses a  penalty for
enrichments in the 4%5 wt % range because there are no measurement data in this range.  However, there is no
technical basis for this extension; justification is based on experience and engineering judgement.  Again, methods
that can provide a derived basis for extrapolation of the current limits need to be explored.

5.1.2 Critical Experiments with Fresh Fuel

The validation of criticality safety analysis codes using critical experiments with unirradiated fissile material is a
procedure that has been applied for years to meet the requirement of ANSI/ANS-8.1.  Experiments exist for a wide
variety of conditions representative of pin lattices within cask environments.54  The value of fresh fuel critical
experiments to validation of spent fuel in casks relates to the fact that these experiments provide validation of the
particle transport models and cross-section data within cask-like conditions.  However, these experiments do not
contain the same relative compositions or even all of the nuclides that are present in spent fuel.  Thus,  there is a
need to limit the nuclides to those present in the critical experiments (typically plutonium and uranium isotopes
only) and/or demonstrate their applicability to a spent fuel inventory.  Proprietary fresh fuel experiments with
uranium and plutonium compositions similar to that of typical spent fuel have been performed in France (see
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Appendix A and Ref. 55).  Acquisition of such information would be very valuable for use in actinide-only burnup
credit approaches and would assist in validation for casks seeking full burnup credit.  Also, proprietary fresh fuel
experiments with lattices surrounding cans of fission product solutions have been performed in France and would
be excellent experiments to use if credit for fission products is sought.

5.1.3 Reactivity-Worth Experiments

To bypass the difficulties associated with using spent fuel assemblies in critical experiments, spent fuel samples
(pellets) and samples doped with fission products have been inserted within a fresh fuel system to obtain reactivity
worths.56  Unless the sample is large enough to provide a significant perturbation to the reference fresh fuel system,
the reactivity worth cannot be easily calculated with conventional Monte Carlo codes that are typically used for
criticality safety analyses.  These experiments can thus provide a means to obtain validation of the reference cross
sections used in the criticality analysis, but little else.   The French program for burnup credit relies heavily on this
approach in conjunction with chemical assay data to demonstrate that the predicted fission product worths are
conservative for their codes and that the uncertainty in the fission product cross sections is encompassed by the
uncertainty in the prediction of the fission product inventory.  Sufficient system perturbation to enable an accurate
measure of reactivity worth typically requires isotope concentrations much greater than those present in a spent fuel
sample. 

The U.S. DOE is currently exploring the potential and the benefits of obtaining the fission product samples from
the French and performing reactivity-worth experiments in a critical experiments facility or a research reactor. 
The French have expressed a willingness to loan the samples, but a final decision on performance of the
experiments has not been made.  A DOE Nuclear Energy Research Initiative project is also funded to investigate
performance of worth experiments in the facilities at Sandia National Laboratories.  Current activities are directed
at getting safety approvals; ideas on the specific type of worth measurements have not been formulated.

Reactivity-worth measurements using portions of spent fuel assemblies have been proposed in the United States57

and by Belgonucleaire as part of their REBUS experimental program.58  The purpose of these experiments was to
provide some very limited measurements with actual spent nuclear fuel.  When doing reactivity-worth
measurements with spent fuel samples, the experiment must either have accompanying destructive assays
performed or the fuel design and reactor operation needs to be sufficiently characterized such that an integral-type
benchmark (isotopic prediction and reactivity worth prediction) can be performed to provide a combined validation
of both the depletion and criticality methodology.  

5.1.4 Subcritical Experiments

The ideal experimental method for assessing the ability of a model to predict the multiplication factor of a system
would be to place spent fuel in a cask or cask-like configuration and perform critical experiments.  Such
experiments are extremely challenging because it is much more difficult to perform because it is extremely difficult
to make even low-burnup spent fuel go critical in a controlled manner without first adding some fresh fuel.  This is
particularly true under cask conditions where external absorbers (basket material) are present.  Spent fuel critical
experiments are also complicated by the fact that the fuel samples are highly radioactive, and not as easily
manipulated as unirradiated fuel.  The expense and complexity of a spent fuel critical is further exacerbated by the
need to determine the spent fuel composition by chemical assay (very expensive due to the potentially large number
of measurements required) or perform predictive analysis validated against other chemical assay information. 
At this time, no critical experiment using commercial spent fuel in a cask configuration is known to have been
performed, although they have been studied.59
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An alternative to spent fuel critical experiments are subcritical multiplication measurements using spent fuel. 
Calculations could then be performed to show the capability to match the predicted multiplication factor to the
measured value.  As with a spent fuel critical experiment, this validation process would require predictions of spent
fuel contents prior to the criticality calculations, and would therefore be an integral approach for validation. 
However, the spectrum should be very similar to that seen in a cask environment and the use of subcritical methods
should allow increased flexibility in measuring different configurations.  Besides the practical difficulty of handling
spent fuel, the performance of subcritical measurements using spent fuel are made difficult by the practical
difficulties with such measurements in a strong radiation field and the need to interpret keff from the actual measured
quantities.60  The accuracy of subcritical measurements in providing a keff value for validation is not as good as that
provided by a critical experiment, but the advantage of having an actual spent fuel measurement and its potential to
validate SNF cross sections (actual measured quantities are very sensitive to cross-section errors) means that such
an experiment should be explored if additional measured data are deemed necessary.

5.1.5 Reactor Critical Configurations

A broad database of critical experiments with partially burned and spent fuel exists in the form of critical
configurations within an operating reactor environment.  At a commercial reactor startup, a controlled approach to
criticality is always taken as part of the startup testing.  The conditions at the point of criticality are well defined. 
Startups at the beginning of a fuel cycle contain a mixture of fresh and burned fuel, and often burnable poisons are
present; startups occurring late in a fuel cycle are based on a combination of burned and spent fuel, and  burnable
poisons have typically been depleted.  

Like the spent fuel experiments described earlier, the calculational model of a reactor-critical state will require the
prediction of spent fuel inventory for each assembly.  Given the size of a commercial reactor combined with the
variation in operating conditions during a fuel cycle, the task of estimating spent fuel contents at the time of a
startup critical can be rather formidable.  However, several reactor-critical models have been developed, and the
capability to closely predict criticality under reactor conditions has been demonstrated.61, 62 

The advantage of using reactor criticals in some fashion as part of the validation process is that they provide
measured critical values for systems actually containing SNF.  The worth of the spent fuel with respect to the fresh
fuel and the degree to which fission products and boron poison concentrations impact the keff value are issues that
need to be considered when selecting critical configurations for validation.  Because of the presence of fresh or
partially burned fuel, together with other physical differences, conditions in a reactor environment are dissimilar to
those expected in a spent fuel cask.  The effect of these differences must be quantified to determine if a reactor
environment is neutronically similar to a cask environment.

5.1.6 Summary and Discussion

The purpose of a validation activity is to assess the capability of the codes and data to predict reality.  As used in
criticality safety, the validation process should be able to demonstrate the bias and the uncertainties associated with
the analysis code(s) and data.  The uncertainties can arise from uncertainties in the experiments, uncertainties
inherent in the code models and data, and uncertainties specific to the user (model approximations, selection of code
options, etc.).  Currently, approaches used for criticality safety validation often apply statistical techniques to
derive "bounding" estimates of the bias and uncertainty based on the differences between critical (keff = 1.0) and the
computed result, together with the spread in the computed results.54  As demonstrated from the previous subsection,
no one set of critical experiments can provide adequate validation for burnup credit applications using this
approach alone.  Thus, the necessary approach involves utilization of all applicable experimental information in a
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manner that reasonably ensures bounding estimates have been determined for the bias and uncertainty.  Research
needs to be focused on quantifying the value of each type of experiment and investigating validation approaches
that effectively combine analysis correlations with the types of experimental information.

The DOE Topical report11 used only fresh fuel critical experiments to validate the analysis of keff for spent fuel
casks and incorporated the nuclide bias and uncertainty by separate adjustment of the predicted SNF isotopics
based on comparison with chemical assay data. The limited database of chemical assays and the difficulty and/or
uncertainty inherent in the measurement of many of the individual nuclides (most fission products and minor
actinides) pose significant obstacles to this phase of the validation process.  Even with additional measurements,
relatively few data points will ever be available relative to the variety of fuel designs and operating histories to be
considered.  Thus, given a database with such a limited sample size, it is difficult to obtain meaningful statistics
relating predictions as a function of spent fuel characteristics (enrichment, burnup, fuel design, etc.).  The critical
experiments proposed in Ref. 11 included all the nuclides of the actinide-only inventory used in the safety
assessment, although the concentrations and combinations are not that observed in spent fuel.  To overcome the
limitations of the fresh fuel critical experiments relative to there material compositions, use of reactor-critical
configurations have been proposed63 and studied.61, 62 

Integral validation involves the use of depletion methods coupled with criticality calculations to determine keff for a
measured system containing SNF (e.g., a spent fuel critical or reactor critical configurations).  In practice, this 
procedure would be applied in spent fuel cask calculations.  The perceived limitation with integral validation is that
the biases and uncertainties for the depletion approach cannot be separated from those associated with the criticality
calculation, and only the net biases and uncertainties in the entire procedure are obtained.  Integral validation allows
for compensating errors in the depletion approach (i.e., underprediction of a given nuclide’s concentration coupled
with simultaneous overprediction of a different nuclide’s inventory).  Thus, it is desirable to ensure the uncertainty
estimated for individual nuclides is understood and properly considered in the safety analysis. 

Arguments can be made that reactor-critical configurations are not appropriate even for integral validation because
of differences between reactor conditions and cask conditions.  However, other arguments can be made in favor of
reactor-critical configurations as integral benchmarks, primarily because the design and material composition of the
fuel to be placed in a cask is identical to that present in commercial reactors.  Thus the issue with reactor critical
configurations is their relevance to cask geometries, whereas the issue with fresh fuel critical experiments is their
relevance to the inventory of SNF. 

Sensitivity/uncertainty (S/U) methods64%65 have the potential to be of significant benefit in addressing many of the
validation issues presented above.  Such methods can address the applicability of the fresh fuel critical experiments
and reactor critical configurations to cask designs with SNF.  Besides defining the applicability of these classes of
experiments, S/U analysis can potentially identify deficiencies in the current database and provide a quantitative
basis for extension beyond the existing database.  The S/U methods also have the potential to assess the benefit of
reactivity-worth experiments and subcritical experiments and identify potential reductions in the margin of
subcriticality allowed by their use.  Reactivity-worth experiments and subcritical experiments are prime candidates
to support additional validation of fission product cross sections, which have typically not had the scrutiny or
intense evaluation dedicated to the primary actinides. 

Sensitivity/uncertainty methods may also be an approach that can be used to support expansion of the area of
applicability for the chemical assays beyond their current limits in terms of burnup and initial enrichment.  In other
words, does 3.6 wt % fuel burned to 40 GWd/MTU have similar irradiation characteristics as 4.5 wt % fuel burned
to 55 GWd/MTU?  If sensitivity methods can be used to quantify the similarity between different SNF
characteristics, then S/U methods may be able to establish and justify trends such that interpolation and/or
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extrapolation techniques can be used to estimate the bias and uncertainty associated with SNF for which there is no 
chemical assay data.

Another approach that could be used to obtain uncertainties in the SNF inventory without adjusting each individual
nuclide would be to assess the integral effect on keff of random  variations to the SNF nuclide set within the
characterized uncertainty bounds defined for each nuclide.  This random variation of the inventory would provide a
more realistic distribution of keff values for the application that can be directly tied to nuclide uncertainties and
prevent simultaneous conservative correction of each nuclide & which is a bounding, but unrealistic approach. 
A conservative margin can be assigned based on the expected statistical distribution of keff values.  Perceived
advantages (better estimates of the impact of the uncertainty in the spent fuel inventory) and disadvantages
(increased complexity and computational time) of this approach need to be studied. 

5.2 Modeling Considerations

5.2.1 Depletion Models

Much of the depletion analyses performed to date for burnup credit evaluations and validation exercises have
utilized some version of the SAS2H sequence66 of SCALE.  This analysis sequence solves the neutron transport
equation on a one-dimensional (1-D) approximate model of a nonhomogenous assembly lattice, coupled with a
point-depletion approach (ORIGEN-S) based on the assembly-averaged fuel flux.  Previous work has demonstrated
that the ORIGEN2 code could not provide the needed accuracy in the actinide inventory over the range of burnup
and fuel designs, while some reactor physics codes did not track sufficient nuclides to provide accurate inventories
after significant decay times.  Although the SAS2H approach has some shortcomings, it has been shown to do
remarkably well for PWR fuel,16, 24, 25 and reasonably well for more heterogeneous (e.g., enrichment and absorber
rod variations) BWR designs.26, 30  Results of PWR depletion problems solved by the OECD Working Group16, 18

indicate good agreement between SAS2H and a variety of codes, including those that use 2-D geometries in the
assembly design.  However, for BWR fuel designs, initial comparison of SAS2H with 2-D codes30, 67 indicate
differences that need to be further investigated and understood to determine the impact of the geometry modeling on
the discrepancies. 

In particular, the presence of integral burnable poison rods (IBPRs) common in BWR designs complicate the
depletion solution of BWR assemblies when using a 1-D approach.  The strong absorption near the rods coupled
with self-shielding effects in the IBPRs themselves cannot be accurately modeled in SAS2H.  This situation should
be studied as a part of the study of heterogeneous modeling effects, but methods to allow better treatment of IBPR
depletion in a 1-D model should also be considered.

Within the OECD Working Group,16 depletion calculations were performed for three burnups for a pin-cell based
on a pin from a CE 14×14 PWR.  Comparisons were made on a nuclide by nuclide basis for each burnup case. 
Agreement among participant’s data indicated potential problems between data libraries or methods employed for
238Pu, 243Am, 109Ag, 149Sm, 151Sm, 155Gd, 237Np, and 135Cs.  Plutonium and americium discrepancies were believed to
be due to incomplete data in libraries used by certain participants.  The nuclides 149Sm, 151Sm, and 155Gd showed the
most significant variations among participants.  Fission yields, cross-section and parent-nuclide cross-sections are
likely culprits and these data should be reviewed to better understand potential uncertainties arising from these data.
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5.2.2 Calculation of keff

The expectations regarding the codes to be used to determine keff of a dry storage or transport cask are documented
in Refs.1, 2, 68.  Monte Carlo codes capable of 3-D solutions of the neutron transport equation are typically
required for such applications.  With the use of a large distributed fission source inherent with use of an axial
burnup profile, concerns have been raised that the codes may not be used in a manner that assures proper
convergence of the result to the correct keff value.  Problems performed by the OECD Working Group have
demonstrated that results can vary based on users selection of input parameters crucial to proper convergence.
However, Ref. 21 has demonstrated that sampling of the fission source uniformly over the fuel region coupled with
adequate parameter specification (1000 particles per generation, 1000 %2000 generations per run) will provide
properly converged results for the keff value of a SNF cask. To alleviate concerns with user selection of such
parameters and/or questions regarding the work of Ref. 21, it is possible to develop an automated scheme within the
SCALE/KENO V.a environment that will ensure proper convergence for a spent fuel system.  This capability
would reduce the potential for user error and provide for more efficient Monte Carlo solutions.

5.3 Confirmation Measurements for Cask Loading

Loading of SFPs requires administrative determination of the burnup via the reactor record for the particular fuel
assembly.  This practice is consistent with ANSI/ANS-8.17 which requires "analysis and verification of the
exposure history of each fuel unit" or "a reactivity measurement."  However, Regulatory Guide 3.71 adopts
ANSI/ANS-8.17 with the exception that loading of a cask licensed for burnup credit should require some physical
measurement to verify that the fuel has a burnup matching that predicted by reactor records.  This requirement is
consistent with ISG8 Rev. 1,7 the IAEA transport regulations,8 and current practice in France.55 

The DOE, EPRI, and industry have collaborated to propose, develop, and test several measurement techniques that
can be used to meet the NRC recommendations of ISG8 Rev. 1.  Industry would like to move away from pre-
shipment measurements of each assembly and do measurements within the SFP to obtain a statistical sampling that
demonstrates the accuracy of the utilities administrative records relative to fuel exposure history.  This can be a
significant economic benefit to the industry but its implementation must be done such as not to compromise
assurance of the characteristics of the fuel assemblies being loaded in a particular cask.  The measurement methods
and the various proposed methods for their implementation need to be further reviewed to support development of
improved guidance (beyond ISG8 Rev. 1) on regulatory expectations for pre-shipment measurement
implementation.  Such regulatory expectations would include specification of proper measurement criteria needed to
ensure verification of reactor records.  An industry report that discusses the variation in the way that utilities obtain
and maintain their records on spent fuel burnup together with a discussion of the anticipated uncertainty in the
reported burnup would be beneficial to development of loading curves that are independent of the reactor facility.  

Some form of axial profile (limiting or otherwise) will be assumed for use in a cask license approval.  However, it
may be beneficial to verify at fuel loading time that the burnup profile of an assembly is bounded by the assumed
profile used in safety analyses.  Measurement methods that consist of several axial measurements could be
amenable to real-time evaluation of acceptability of the burnup profile if coupled with an adjoint analysis of a
selected licensing profile at the time of measurement.  The folding of the adjoint information with the measured
profile would be evaluated against criteria developed in the licensing approval as a means to ensure that the
measured profile is adequate for the particular cask.  This method constitutes a conceptual approach at this time 
and has not yet been developed or tested for feasibility.  However, given the wide variety of axial-burnup profiles in
the spent fuel inventory, it may be advantageous to further explore this approach.  
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Subcritical measurements that provide a GO/NO GO assessment of proper loading (i.e., ensures keff remains below
a specified limit) is also a concept that could be explored as an alternative to burnup measurements of each
assembly.  This concept needs extensive development prior to practical implementation but when fully mature may
provide distinct advantages relative to loading confirmation and ease of implementation.  

In light of the limited attention given to horizontal burnup gradients and the conservative approach that has been
conceived in Ref. 11, it may also be beneficial to study how pre-shipment measurements could be used to ascertain
the use of an assumed horizontal burnup gradient. 

5.4 Implementation Issues

Credit for fuel burnup introduces challenges for the industry and the NRC in terms of additional complications in
the preparation and review of safety analysis reports (SARs).  In addition, there is a need to establish technical
specifications to ensure that loaded contents are consistent with the allowable contents analyzed in the SARs. 
A number of technical issues with regard to burnup credit criticality assessments are not fully resolved, and thus,
variations in submitted safety assessments, which will prolong the associated review time, should be expected. 
Additionally, technical specifications and operating procedures associated with cask loading are more complicated. 
The SAR for a burnup credit cask must assure that the methods imposed for certifying the cask contents can be
readily understood and implemented at any potential facility that has a license to handle SNF.  Similarly, the NRC
must determine the language and criteria that needs to be included in the certificate of compliance that is issued.  

Because the inclusion of burnup credit in the criticality safety assessment for casks is a new addition to industry
and NRC procedures, diligence will be required in both the preparation and review process.  Ready access to the
technical information of import to burnup credit and computational tools that expedite the analyses should facilitate
preparation and review  of SARs.  A goal of current research should be to develop sound technical guidance and
criteria to be considered in preparation and review of the SARs and to ensure that adequate computational tools and
data are readily available. 

Implementation of burnup credit also creates potential concern relative to different off-normal or accident
configurations that may need to be considered in the safety analysis.  Should a mis-loading event be considered?
And if so, what type of mis-loading event?  Can a mis-loading event be analyzed in place of the requirement to
perform a pre-shipment measurement?  Another concern expressed at the OECD Working Group has been the fact
that the reduction in conservatism caused by using spent fuel isotopics should cause the reviewer to consider the
impact of improbable, but possible cask configurations that could increase the keff value.  In particular, the concern
over SNF assemblies shifting during an accident such that a portion (5%15 cm) of the ends of the fuel are not
separated by the basket poison plates.  In a spent fuel cask certified with fresh fuel isotopics, the improbability of
the event coupled with the margin of conservatism by using all fresh fuel would seem to negate the need to make
such an evaluation.  However, in a cask licensed with burnup credit, the margin of conservatism is less and the ends
are an important contributor to the reactivity of the cask.  Of course a simple fix to this problem would be that cask
designers and reviewers ensure the basket poison actually will separate the entire length of the fuel region in all
conceivable accident configurations.  Except for cask designs that are already licensed, this concern should be
readily addressed by careful attention to the basket design. 
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6  PROPOSED RESEARCH AND PRIORITIZATION 

The previous sections identified the parameters, phenomena, and issues important to effective implementation of
burnup credit.  Recommendations for further work were noted with each topic.  This section seeks to establish a
priority of the recommended research (in terms of high, medium, or low categories) and provide a concise
description of the tasks in order of their prioritization.  Although the prioritization of recommended work is
somewhat subjective, the following criteria were considered in assigning prioritization:  (1) need for technical
closure within ISG8; (2) increase in range and type of fuel that can be considered; (3) industry and regulatory needs
for safe, simple and cost-effective implementation; (4) increased reactivity credit made available; and
(5) anticipated work required for resolution/implementation. 

6.1 High-Priority Research

It is anticipated that the issuance of ISG8 (see Ref. 7) will prompt license amendment requests that seek credit for
fuel burnup. Therefore, the highest-priority research should focus on providing technical closure on unresolved
issues within the framework of the ISG8 recommendations and increasing the population of SNF assemblies that
can be considered in a cask designed for burnup credit.  Closure on these unresolved issues should be done in a
manner that enables expansion beyond the framework of the ISG8 recommendations.  

Unresolved technical issues that exist within the framework of ISG8 include:

1. parameter specification for depletion analysis (see Sects. 4.2.1%4.2.4), 
2. process for selection and modeling of axial and horizontal burnup distributions (see Sections 4.4%4.5), 
3. development of guidance for estimating the fission product margin,  
4. clarification of validation needs,
5. extension of ISG8 to include assemblies with fixed and integral absorbers, and
6. extension of ISG8 to allow cooling times other than 5 years.

As discussed in Sect. 4.2, the behavior of the parameters important to the PWR depletion analysis are fairly well
characterized, but no reference report is available from which to select bounding values applicable to all PWR
facilities.  An alternative, but seemingly impractical approach, would be to develop a process by which, prior to
fuel loading, reactor records are used to ensure the fuel was not exposed to operating conditions outside of those
used in the cask licensing process.  It is suggested that industry prepare a reference report that provides realistic
bounds for the parameters cited in Sect. 4.2 (average soluble boron, outlet moderator temperature, maximum
pellet-averaged fuel temperature, and specific power range) based on the performance of existing PWR reactors in
the United States. 

One process for the selection of axial and horizontal burnup distributions within the framework of the ISG8 is
available within Ref. 11.  However, the axial burnup database that is available37 does not encompass all fuel
designs and may need to be expanded to cover additional fuel design types and operating conditions.  An increased
understanding of the phenomena and modeling techniques for both axial and horizontal profiles would be beneficial
to better understanding the importance of expanding the profile database and/or providing alternatives to the
development and use of a database.  The NRC research program currently plans such an investigation as a means
to provide increased understanding of the issues and to support a search for potential alternatives to the use of a
profile database that would need to continually expand to include ever-changing fuel designs and operating
histories.  However, as the research program proceeds, it is suggested that the industry pursue efforts to expand the
existing database to provide profiles based on new fuel designs and enrichment/burnup regimes (high-enrichment,
high-burnup fuel) that may be needed in the near future.  In addition, input from industry on the use of control rods
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during normal operations and the impact their use has on the axial-burnup profile and SNF nuclide inventory would
be of benefit in considering whether or how to consider the effect of control rods in a burnup credit safety analysis.   

The ISG8 requests the licensee to estimate the fission product margin available within the cask.  The NRC research
program is currently working to provide specific recommendations on how the estimates (e.g., computational
benchmarks and/or comparison with available fission product chemical assays) should be developed.  This
procedure will likely entail development of computational benchmarks against which comparisons can be made.  

The short-term need for clarification relative to validation involves the confirmation that use of only fresh fuel
critical configurations is adequate to validate actinide-only burnup credit.  The NRC research program will use the
sensitivity/uncertainty methods of Refs. 64%65 to help identify the adequacy of this approach and, as needed,
identify other types of experiments that should be considered in the validation of actinide-only burnup credit. 
The applicability of using reactor critical configurations to validate actinide-only burnup credit analyses will also
be studied using the sensitivity/uncertainty methods of Refs. 64%65.  This work would clarify issues relative to
perceived needs for additional critical experiments for use in the validation of actinide-only analyses.

A review of recent PWR fuel designs reveals extensive use of fixed and integral burnable absorbers (see
Sects. 4.2.5%4.2.6).  Increasing the range of PWR fuel designs beyond that allowed by ISG8 is a top priority
necessary to allow effective implementation of burnup credit to meet industry needs for a larger portion of the
existing SNF inventory.  Thus, work to expand the ISG8 to include consideration of these fuel designs is being
expedited under the NRC research program and initial results should be provided by early May 2000. 

Although many factors are involved (e.g., fuel design, burnup and initial enrichment, and axial profile), provision to
allow cooling times other than 5 years is a desired flexibility voiced by industry.  For cooling times greater than
5 years, this flexibility can provide approximately 1% )k credit per additional 5 years of cooling time (up to
~ 20 y).  The advantage provided by using longer cooling times in the safety analysis increases with burnup
(see Sect. 4.3) and is larger when fission products are included in the SNF nuclide set.  Issues that would need
consideration in order to allow cooling times other than 5 years are: (1) confirmation that the bounding profile is
independent of cooling time and/or selection of bounding axial profile as a function of cooling time, (2) assessment
of the uncertainty due to uncertainty in decay data, fission yields, etc., and (3) preparation of an administrative
procedure that ensures cooling time is confirmed at cask loading and that the proper loading curve is selected. 
Provision for cooling times less than 5 years may benefit efforts to optimize cask capacities by mixing of fuel
having high thermal and radiation sources with fuel having low thermal and radiation sources.  The NRC research
program is working to provide input to this issue by early April 2000.

Commensurate with the high-priority work noted above, the technical basis for the ISG8 and a Standard Review
Plan (SRP) for use in review of burnup credit cask applications needs to be developed.  These documents should
provide licensees and NRC staff with technical information and criteria needed to make informed decisions during
preparation and review of the safety analysis.  A review of pre-shipment measurement techniques that can confirm
proper fuel loadings should be included, together with a review and consideration of new accident configurations
specific to burnup credit.  

The added complexity of linking depletion analyses with a multi-axial-zone cask model will also mean that existing
software used in staff review of cask license submittals will need to be upgraded to facilitate the review process. 
Such upgrades are underway within the NRC research program.

The NRC research program is currently focused on the high priority work areas noted in this section with the goal
to complete studies by early FY 2001 (unless other dates are provided above).  The goal is to help provide technical
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information that will aid the NRC staff in issuing additional guidance and/or developing a SRP for use of burnup
credit. 

6.2 Medium-Priority Research

With the exception of the cooling time issue noted in Sect. 6.1, research to expand the amount of credit allowed for
PWR SNF has been classified as medium-priority research.  Besides the consideration of resource allocation, this
recommendation is based on the fact that use of burnup credit is a new endeavor within the licensing process and, in
the absence of extensive experimental data, it does not seem that additional credit is warranted without some
experience with the use of the technology and process.  Reference 69 provides a comparison of the French approach
to burnup credit (where extensive experience exists) and the recent methods of ISG8.  For the assemblies allowed
by ISG8, Rev. 1, the amount of burnup credit provided by the two approaches is very similar.  Thus, in this
document, high-priority research seeks primarily to extend the range of fuel assemblies allowed within the approach
of ISG8, while medium-priority research seeks to extend the amount of burnup credit that is allowed.

Increased burnup credit can be obtained by:

1. reducing or eliminating the loading offset specified in ISG8 for fuel with initial enrichments over
4.0 wt %,

2. increasing the allowed burnup for the licensing basis to greater than the 40 GWd/MTU allowed by ISG8,
3. allowance of credit for fission products, and
4. reducing conservatism in the DOE-proposed horizontal distribution.  

Initial enrichments for PWR fuel designs have exceeded 4.0 wt % 235U for a number of years, and initial
enrichments in the range of 4.5 to 4.8 wt % 235U are currently being used. Initial enrichments are approaching
5.0 wt % 235U.  The loading offset was included in the ISG8 because the chemical isotopic assay data to support
validation is extremely limited for enrichments greater than 4.0 wt % 235U.  Similarly, the burnup allowed for the
licensing basis was limited to 40 GWd/MTU because of the paucity of chemical assay data.  Thus, for assemblies
with burnup values greater than 40 GWd/MTU, burnup credit is only allowed (by ISG8) for 40 GWd/MTU. 
Work is needed to provide a process and justification to increase the allowed burnup and initial enrichment based
on the limited amount of chemical assay data that are available.  Sensitivity and uncertainty methods provide one
potential approach to provide a justification, but other approaches should be considered.  However, the availability
of measured assay data should facilitate any technical justification; thus additional measured data (chemical assay
or related integral data) in this regime should be sought and analyzed.  A technical justification for an increase in
initial enrichment and burnup in the absence of chemical assay data will not be a simple or straightforward task. 
Thus, efforts to obtain additional assay data need to continue even as approaches such as the sensitivity and
uncertainty methods are explored.  The NRC research program is making efforts to work with industry, DOE, and
other countries to obtain sufficient quantities of measured data such that the sensitivity/uncertainty methods can be
tested and a process for improved estimation of the bias and uncertainty associated with prediction of SNF
inventories can be developed for use in regimes where chemical assay data are limited or non-existent.  This
research will benefit other technical areas (i.e., radiation and decay heat sources) related to high-burnup SNF, and a
report on the research efforts will be available by the middle of FY 2001.

Similarly, extension of the current ISG8 to allow the fission product nuclides of Table 2 in a burnup credit safety
assessment will not be simple or straightforward. Initial analyses at ORNL with a generic rail cask confirm the need
for eliminating the offset penalty and including the fission products in order to enable maximum fuel loadings
(based on weight and size constraints) with PWR fuel enriched to 5.0 wt % 235U.  The validation process will need
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to consider measured systems containing fission products:  reactor-critical configurations, reactivity-worth
experiments, and additional chemical assay data.  The applicability of reactor-critical configurations needs to be
confirmed with sensitivity/uncertainty approaches and the process for utilizing the information from the worth
experiments needs to be determined.  The enhanced sensitivity of subcritical experiments to cross sections indicates
they may provide a means to facilitate validation of fission product cross sections.  An assessment of the
uncertainty in the fission product cross sections within the evaluated nuclear data files would also be of value to
ascertain the amount of burnup credit from fission products that should be allowed.  Estimates of the reactivity
credit available from all the stable SNF nuclides will help indicate the availability of subcritical margin beyond the
fission product nuclides of Table 2 and may be beneficial in assessing the extension of ISG8 to include fission
products.  The NRC research program is now working to formulate ideas and objectives relative to investigating the
potential for crediting fission products in the criticality safety analysis.  Work will commence once the high priority
work areas are completed

As indicated in Sect. 4.5, the approach to account for horizontal burnup distributions seems rather conservative and
work to reduce that conservatism may provide benefits to increasing the allowed burnup credit.  The NRC research
program’s efforts to investigate the horizontal burnup profile issue could benefit from additional industry input on
the variation of these profiles as a function of axial position.  An exhaustive database is not needed, merely
sufficient representative information to help judge whether the existing proposed approach of Ref. 11 is overly
conservative for typical PWR operations.  The NRC research program will initiate studies in this area in early
FY 2001.

6.3 Low-Priority Research

Low priority research is classified into three sub-categories: (1) research beneficial to improve the efficiency of the
licensing process and/or operational implementation of burnup credit for PWR SNF, (2) research needed to extend
burnup credit to BWR fuel designs, and (3) research needed to extend burnup credit to PWR and BWR fuel designs
containing MOX.  Research in the first sub-category would include efforts to improve the process by which the
cask contents are certified and to investigate the use of pre-shipment measurements that would enable use of more
realistic axial- and horizontal-burnup profiles.  The second and third sub-categories are very broad and encompass
investigations on the parameter, phenomena, and issues discussed in Sects. 4%5 as they apply to BWR and MOX
fuel designs. 

For both BWR and MOX fuel designs, research is needed to demonstrate the relevance of critical experiments and
reactor-critical configurations to the validation process.  The void fraction in a BWR makes the applicability of
critical configurations to cask conditions less apparent than for a PWR.  Also, there is a scarcity of chemical assay
data for all ranges of burnup and initial fissile loading for both BWR and MOX fuel designs.  Efforts to obtain
additional assay data and utilization of the approach identified for extending applicability of PWR assay data need
to be initiated.  Axial-profile databases are also nonexistent for these two fuel design types, and reference values for
the parameters used in the depletion analyses need to be developed.  The strong heterogeneity of these designs also
needs to be considered in guidance on appropriate models that should be used.  Finally, the adequacy of the pre-
shipment measurements developed for use with PWR fuel needs to be established.  

The paucity of measured data and the limited experience with BWR and MOX issues related to burnup credit make
it likely that the initial guidance for the implementation of burnup credit for these fuel designs will be limited, even
after completion of the research work.  It is too early to define the nature of future work that might be needed to
improve implementation of burnup credit with BWR or MOX fuel designs; however, limited burnup credit may be
sufficient for addressing industry needs relative to these fuel types. 
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It is possible that either of these three categories of low-priority issues could be elevated to a higher priority as more
is learned about the benefits that can be obtained from using burnup credit with these designs.  An initial step in a
BWR-related research program would be to assess the importance of burnup credit for BWR fuel.  Current basket
designs (without water gaps) are capable of accepting BWR fuel with average initial enrichments up to ~4.2 wt %,
without credit for burnable absorbers.  BWR fuel designs have only recently exceeded 4.2 wt % enrichment, with
very recent designs featuring average initial enrichments as high as ~4.5 wt %.  Therefore, nonburnup credit BWR
fuel baskets are capable of accepting the majority of BWR fuel currently in storage.  Consequently, burnup credit
for BWR fuel may not be needed in the near future (especially if a minimum 5-year cooling time requirement is
maintained).  Benefits of burnup credit for BWR fuel include:  (1) reduction in required basket fixed neutron poison
loading, and (2) increase of allowable initial enrichments.  Benefits do not include increased canister capacity as
they do for PWR fuel.

In conjunction with both of these sub-categories of low-priority research, efforts should be made to identify and
obtain experimental information that will help facilitate improved utilization of burnup credit.  Additional
experimental data are needed to support reduction of conservative margins developed to ensure criticality safety. 
In the absence of direct validation or understanding of the phenomena, excessively conservative margins may need
to be used.  Thus, opportunities to obtain experimental data in the domestic and international arenas need to be
considered as they arise.  Beyond the potential to reduce conservative subcritical margins, additional experimental
data should help reduce uncertainty in the licensing process and help reduce the time involved in preparing and
reviewing the criticality safety assessment.  A basis by which to evaluate the value of an experiment to reducing the 
margin of subcriticality is possible with the sensitivity/uncertainty methods described in Refs. 64%65.  However,
even without such a basis, additional experimental data in a relatively new field, such as burnup credit, should
enable the community to gain improved understanding and added confidence in the codes and data proposed for use. 

Advances in subcritical measurement techniques should be closely monitored.  The capability to perform such
measurements will provide extremely valuable benchmarks for the verification of integral calculations of depletion
and criticality calculations under spent fuel cask conditions.  In the absence of spent fuel critical experiments,
subcritical measurements may be one of the few avenues available to validate burnup credit methods that include
fission product credit.  In addition, subcritical measurements may offer an alternative to assembly burnup
verification measurements.

A large number of experiments are being proposed, or are ongoing, in which fission product samples will/are being
measured to determine the worth of the quantified sample.  Such measurements complement integral experiments
(reactor critical configurations or subcritical experiments) considered to validate fission product credit. 
Participation in international programs should be encouraged, together with analysis of data to help validate cross-
section data for those nuclides.  

Continuing analysis of spent fuel samples should be encouraged to extend the range of assay data to higher
enrichments and burnups, and to be more representative of the full inventory of commercial spent fuel.  Efforts
should be initiated to extend the number of measurements for burnup credit nuclides, especially the fission products
for which very few measurements exist.  

6.4 Summary

Table 5 provides a summary of the research objectives, together with their proposed priority categories and the
parameters, phenomena, and/or issues they address.  In addition, the table contains an indication of the other
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organizations or countries that may be willing to cooperate in the research and/or who have data or information that
would be of value to completing the research.

The proposed research efforts are of interest to several organizations & domestic and international.  As discussed in
Sect. 3 and Appendix A, France has established four joint industry/government working groups to achieve the
objectives of much of the research listed in Table 5.  The experimental data (critical experiments, reactivity-worth
experiments, and chemical assays) from France and Japan (chemical assays) may be of significant value to
achieving the research objectives.  Similarly active participation in the OECD Working Group on Burnup Credit
and the IAEA efforts to monitor burnup credit implementation in various countries can provide valuable
information and insights relative to many of the technical issues discussed in this report.



S
ection 6

P
roposed R

esearch and P
rioritization

43

Table 5  Summary of proposed research objectives and activities

Priority Research objective Activities/tasks
Cooperative 
participantsa

High Consensus parameters 
    for PWR depletion
    analysis

(1) Reference report for PWR operations providing Tf, Tmod, 
            ppm soluble boron, and specific power range
(2) Study to understand effects of exposure history 

EPRI, NEI

High Guidance on selection
    and modeling of axial
    and horizontal burnup
    distribution for PWRs

(1) Study competing effects of profile shape
(2) Update PWR profile database to include current fuel designs
(3) Develop guidance on process to select bounding profile
(4) Develop guidance on axial model (discretization and boundary     
            conditions) and proper source convergence
(5) Modeling guidance for horizontal burnup distribution 

EPRI, NEI,
OECD, DOE,

Utilities 

High Benchmarks for 
    calibrating estimate of
    fission product margin
    per ISG8

(1) Develop generic rail and truck cask model and standard          
     depletion cases

(2) Prepare and document computational benchmark set

OECD

High Confirm applicability of
    critical experiments
    for PWR actinide-only

(1) Use sensitivity/uncertainty analysis to evaluate applicability 
     of available critical experiments (fresh fuel and reactor critical
     configurations) to estimate subcritical margin for actinide-
     only

None

High Extend ISG8 to allow
    PWR assemblies with
    fixed and integral
    absorber rods

(1) Assess impact on keff due to incorporation of absorber rods as 
     function of absorber loadings and exposure after burnout

(2) Assess modeling issues using multidimensional methods
(3) Identity and analyze any additional chemical assays from PWR 

     assemblies with absorber rods
(4) Investigate impact of absorber rods on SNF inventory uncertainty
(5) Develop guidance for extension of ISG8 and proper modeling 

     assumptions

DOE, Japan,
France
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Table 5 (continued)

Priority Research objective Activities/tasks
Cooperative 
participantsa

High Technical basis and 
    recommendations for
    NRC Standard Review
    Plan relative to ISG8

(1) Assess reactivity margin due to loading offset, fission products,
     inventory uncertainty, cask design, and cooling time as a
     function of SNF characteristics (burnup and enrichment)

(2) Review capabilities and criteria for pre-shipment measurements
     and uncertainty associated with reported utility burnups

(3) Assess need to evaluate cask configurations specific to burnup
     credit applications

(4) Prepare technical basis and draft SRP 

None

High Preparation of prototypic
    software to facilitate
    license review

(1) Create SCALE sequence to provide SNF inventory based on
     specified axial profile and interface with cask model 
     for keff analysis

(2) Incorporate capability to automate efficient source convergence
     for spent fuel system  

None

High Extend ISG8 to allow
    cooling times other
    than 5 y

(1) Examine potential of cooling time to affect selection of axial        
     burnup profile

(2) Investigate administrative or measurement needs to ascertain
     proper cooling time loading curve used in cask loading 

(4) Consider impact on long-term disposal

EPRI, Utilities

Medium Reduce or eliminate
    loading offset
    specified in ISG8

(1) Identify and analyze any additional chemical assay data for PWR
     assemblies with higher enrichment 

(2) Investigate approaches, including sensitivity/uncertainty analyses
     to provide technical basis for extending applicable range 
     of SNF validation. 

(3) Prepare recommendation for PWR assemblies with initial
     enrichments greater than 4.0 wt % 235U. 

DOE , EPRI,
Japan, France
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Table 5 (continued)

Priority Research objective Activities/tasks
Cooperative 
participantsa

Medium Increase limit on PWR
    burnup credit
    allowance beyond
    40 GWd/MTU 

(1) Identify and analyze any additional chemical assay data for
     assemblies with burnup values greater than 40 GWd/MTU

(2) Investigate approaches, including sensitivity/uncertainty analyses
     to provide technical basis for extending applicable range 
     of SNF validation

(3) Prepare recommendation for extending the allowance for burnup
     beyond 40 GWd/MTU for PWR assemblies

DOE, EPRI, France,
Japan

Medium Extend ISG8 to provide
    recommendations for
    allowance of fission
    product nuclides

(1) Identify and analyze any additional chemical assay data with
     fission product measurements

(2) Review uncertainty associated with fission product cross sections
(3) Evaluate use of reactivity worth, subcritical experiments, and

     reactor critical configurations for validation of fission
     products in burnup credit applications

(4) Assess uncertainty associated with fission product inventory
(5) Assess and update axial profile and depletion analysis parameter

     recommendations
(6) Estimate margin of subcriticality from nuclides not credited
(7) Develop recommendations for allowance of fission product

     nuclides

DOE, EPRI, France,
Japan, OECD
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Table 5 (continued)

Priority Research objective Activities/tasks
Cooperative 
participantsa

Medium Reduce conservatism in
     the horizontal burnup
     distribution

(1) Identify and evaluate measured data related to horizontal burnup
     variations

(2) Evaluate potential for reduced variation at ends
(3) Develop recommendation(s)

EPRI, NEI

Low Improve efficiency of
     operations with PWR
     spent fuel

(1) Evaluate new experiment data to improve estimate of margin 
     of subcriticality

(2) Evaluate potential/necessity of expanding axial burnup profile
     database to include new assembly designs

(3) Evaluate potential for improving efficiency and effectiveness 
     of pre-shipment loading procedures

(4) Evaluate potential for pre-shipment measurement to allow use 
     of less limiting axial and horizontal burnup profiles

(5) Investigate benefits and practical implementation of subcritical
     experiments for pre-shipment measurement

EPRI, NEI

Low Assess benefits and
     needs of burnup credit
     for BWR assemblies

(1) Survey industry needs relative to burnup credit in BWR casks
(2) Use reference cask designs to assess the amount of burnup credit

     required to meet industry needs 

EPRI, NEI
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Table 5 (continued)

Priority Research objective Activities/tasks
Cooperative 
participantsa

Low Develop
     recommendations for
     allowance of burnup
     credit for BWRs,
     if needed

(1) Reference report for BWR operations providing Tf and moderator
     void fraction

(2) Study to understand effects of exposure history 
(3) Develop profile database for BWR assemblies
(4) Confirm process for determining bounding axial profile and

     determine process for determining horizontal profile
(5) Identify and analyze additional chemical assay data for BWR SNF
(6) Perform study of multidimensional modeling effects in depletion

     analysis
(7) Perform sensitivity/uncertainty analysis to evaluate applicability

     of critical experiment data for BWR SNF
(8) Assess adequacy of prototypic codes and models for use with

     BWR assemblies 
(9) Develop technical basis and recommendations for use of burnup

     credit with BWR fuel

EPRI, NEI, DOE,
Japan

Low Assess benefits and
     needs of burnup credit
     with MOX assemblies
     (PWR and BWR)

(1) Survey industry needs relative to burnup credit in casks designed
     for MOX fuel

(2) Use reference cask designs to assess the amount of burnup credit
     required to meet industry needs 

DOE, EPRI, NEI
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Table 5 (continued)

Priority Research objective Activities/tasks
Cooperative 
participantsa

Low Develop
     recommendations for
     allowance of burnup
     credit for MOX fuel,
     if needed

(1) Reference report for BWR and PWR operations with MOX fuel
(2) Study to understand effects of exposure history 
(3) Develop profile database(s) for MOX assemblies
(4) Confirm process for determining bounding axial profile and

     determine process for determining horizontal profile
(5) Identify and analyze additional chemical assay data for MOX SNF
(6) Perform study of multidimensional modeling effects in depletion

     analysis
(7) Perform sensitivity/uncertainty analysis to evaluate applicability

     of experimental data for MOX SNF
(8) Assess adequacy of prototypic codes and models for use with

     MOX assemblies 
(9) Develop technical basis and recommendations for use of burnup

     credit with MOX fuel

DOE, OECD

a EPRI = Electric Power Research Institute
NEI = Nuclear Energy Institute
OECD = Working Group on Burnup Credit (BUCWG), sponsored by Organization for Economic Cooperation and Development/

     Nuclear Energy Agency
DOE = Department of Energy
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APPENDIX A

STATUS OF BURNUP CREDIT PROGRAMS BY COUNTRY

This appendix seeks to provide an informal, qualitative review of industry and government efforts to address
burnup credit issues in various countries.  The review is by no means exhaustive; more specific and quantitative
information can be found in Refs. 19%20 and the references cited herein.

France

The French burnup credit program is currently the most comprehensive of all the countries seeking to implement
burnup credit in nuclear operations.  For nearly a decade the French have used a simple, bounding approach to
enable the use of burnup credit in transport, storage, and reprocessing of PWR spent fuel. For transport and storage
the French allow burnup credit commensurate with the lowest average burnup in any contiguous 50-cm portion of
the assembly.  The credit is limited to consideration for plutonium and uranium isotopes only.  In 1991, the French
industry and the Institute for Protection and Nuclear Safety (IPSN) initiated a joint experimental program to
support the extension of burnup credit.  The work performed at CEA-Cadarache was recently described in papers 
presented at the International Conference on Nuclear Criticality (ICNC).55%56

The CEA-Cadarache program involves destructive assays of spent fuel and reactivity-worth measurements.
The PWR assay information includes fuel with initial enrichments up to 4.5-wt % 235U and burnup values to
61.2 GWd/MTU.  A table of the percentage difference between calculated and measured values indicates that the
French observe an overprediction of the fission product inventory and excellent agreement with important actinides.
Interestingly, there appears to be an improvement in the agreement as the burnup increases.  Of particular value to
the United States would be the fact that assays are available at high burnup and high initial enrichment and that
assay data are available for  103Rh, one of the leading fission product absorbers.  Oscillating reactivity-worth
measurements in the MINERVE reactor have been performed using 13 samples doped with a fission product of
importance to burnup credit.  The calculated-to-measured results were provided, along with a demonstration that
the French have done a thorough job of trying to understand the reasons for disagreements between the measured
and calculated information for each fission product worth measurement.  Integral reactivity-worth measurements
using PWR spent fuel samples were also performed and the calculated-to-measured values reported.  Analyses
using the CRISTAL code package indicate an underestimate of the actual fuel reactivity loss due to irradiation
(conservative), which is accounted for in part by the presence of fission products not used in the calculations. 
A similar experimental program has been performed at Cadarache for MOX spent fuel, and a program for BWR
spent fuel has been initiated.  Beginning in 2001, the French plan to return to the PWR work with the goal to extend
the burnups to >70 GWd/MTU. All of this experimental information is considered proprietary by Cogema and
Framatome, who funded most of the work. However, efforts should be made to obtain the data for use in regulatory
research programs and/or licensing within the United States.  [Note the DOE did participate in Phase III of the
PWR  program, where the reactivity worth of spent fuel samples was obtained. ORNL has this proprietary
information and may be able to analyze it using tools of interest to the NRC research program.]

At the IPSN facilities in Valduc, a multistage critical experiment program related to burnup credit is currently
under way.  The program utilizes a subcritical approach to find the critical height of water.70  The first experiments
of interest to the United States would be ones performed from 1986 to 1991 using rods designated as "HTC" rods:
MOX rods with a plutonium-to-uranium mixture commensurate with 4.5-wt %-enriched UO2 rods burned to
37.5 GWd/MTU.  These experiments would be very applicable to the current U.S. interests in actinide-only burnup
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credit, because the range of experimental parameters covered regular lattice arrays of varying pitch under storage
and transport conditions (e.g., various reflector and interstitial poisons).  Before having to stop work in 1995 to
renovate the facility, a critical experiment with 149Sm in canned solution surrounded by a UO2 pin lattice had also
been performed.  Similar experiments are now under way for five additional fission products (103Rh, 133Cs, 143Nd,
152Sm, and 155Gd).  Beyond these experiments, a series of experiments are planned using a combination of the HTC
and UO2 rods in a fission product solution. The last series of experiments, where the HTC and UO2 rods are placed
in the fission product solution, may be the best ones for obtaining the spectrum anticipated in a spent fuel cask. 
The Valduc experiments were funded by Cogema and IPSN at a cost of about $30 million (although it was not
clear if this covered all the phases of the experiments or just the latter ones with fission products).  During a visit to
Valduc, F. Barbry, head of the experimental program indicated that Cogema is now willing to negotiate with the
U.S. NRC to make these experiments available for use.

An area where the French have considerable practical experience is in the measurement techniques and processes
used to measure burnup of spent fuel assemblies.  The French have measured burnup profile data for about 7000
assemblies sent to the La Hague plant for reprocessing.   
       
With these experimental programs proceeding and measurement experience in place at reactor and reprocessing
facilities, the French have now turned their attention to revising their approach for licensing burnup credit.55 
In 1997 a working group consisting of representatives from government and the major nuclear industry concerns 
was formed to address the issues.  The working group will focus on PWR fuel with the intent to extend the use of
burnup credit while maintaining an adequate margin of safety.  Four subgroups have been formed.  The first
subgroup will address depletion analyses and determine appropriate correction factors to account for discrepancies
between calculations and measurements.  The second subgroup will seek to classify "families" of burnup profiles
based on measured profile data from La Hague and operating reactors and determine a bounding (leading to most
reactive condition) for each "family."  Initial results from this subgroup are presented in Ref. 71.  The third
subgroup has considered the determination of the operating history conditions that provide the most reactive nuclide
inventory.  As found in earlier work at ORNL, the operating conditions are those that provide the hardest spectrum
and shortest irradiation time; thus, initial recommendations of this subgroup call for a continuous irradiation history
using the highest average soluble boron concentration, outlet core temperature, and highest nominal specific power
should be used in the depletion analyses.  The fourth subgroup will seek to establish the model needed to assess
burnup credit for storage and transport with particular attention to the axial modeling requirements.  This work
group is looking at models based on normal and accident conditions (e.g., models of loadings where the assemblies
are not fully inserted below the poison basket of a cask).  The coordination of the French approach with industry
and the research branch of the French safety authorities should ensure that a consensus is reached for future
applications. 

Note that the technical work performed within the United States in recent years has already made significant strides
towards addressing many of the subgroup areas discussed above. 

United Kingdom 

Like France, the United Kingdom industry, led by British Nuclear Fuels, Ltd. (BNFL), is seeking the potential
benefit of burnup credit for application in transport, storage, and reprocessing.32, 72, 73  From storage to
transportation and ultimately reprocessing, business operations in BNFL see the economic advantage of burnup
credit as well as a substantial environmental benefit in reducing the waste stream from reprocessing plants (less
gadolinium needed).  BNFL is aided substantially by cooperative agreements with the French, which has provided
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them access to much of the reactivity-worth and assay data obtained in the experimental program at Cadarache. 
Even so, BNFL staff acknowledge the sparse assay data available for UO2 applications.

A licensing application for the Thorp Reprocessing Plant was submitted to the safety authorities in the
United Kingdom nearly two years ago and it still awaits review.  The BNFL  process used in the safety case
demonstrates that, like France, the reprocessing industry provides a venue for considerable experience applicable to
practical approaches for measurements that ascertain the burnup of spent fuel prior to operations.  BNFL utilizes a
concept of residual enrichment to provide a single operating parameter for burnup credit.  Residual enrichment is
defined as the combination of initial enrichment and burnup.  Further information on this parameter needs to be
obtained to fully understand how it is defined and used. 

Relative to transport, BNFL feels that the existing French approach of using the burnup associated with the least
burned 50 cm portion of the fuel assembly will provide an acceptable approach for the burnup credit required in 
the near term.  Approval for use of this credit has not been sought to date although BNFL has performed analytic
studies similar to those performed within the United States.72  Staff from the United Kingdom Department of the
Environment, Transport, and the Regions (DETR) are looking for many of the same considerations noted in the
recent NRC Interim Staff Guidance 8 released in August 1999.  Two trial applications have been submitted by
industry & each using substantially different approaches, but seemingly satisfying the basic tenets to address the
important issues:  isotopic and reactivity prediction and confirmation of fuel history. 

Germany

In Germany, regulatory guidance on burnup credit in wet pool storage has been released and the safety basis of a
German cask for limited burnup credit using the French approach has been approved.  The Germans have been
active participants in the OECD/NEA Working Group on Burnup Credit and have made considerable contributions
relative to the impact of axial profiles.  A description for an  approach taken in applying full (actinide plus fission
product) burnup credit for BWR fuel in wet storage pools has been presented.12  The approach has aspects that
should also be considered in other burnup credit applications with BWR fuel.  Specifically, the method described
for treating the presence of integral burnable absorbers should be valuable for BWR burnup credit. 
 

Japan

Both industry and government organizations in Japan have been investigating burnup credit issues for nearly a
decade.74  In many ways, their efforts are similar to the work in the United States to date:  there have been little 
new experimental data and the efforts have not had the coordinated approach as seen in France
(industry/government partnering) or the United Kingdom (size and interests of BNFL).  But Japan has an active
interest in burnup credit, as evidenced by recent reports from Japan provided to the OECD/NEA Working Party on
Criticality Safety.  Destructive assays of PWR spent fuel with initial enrichments up to 4.5-wt % 235U and 40%45
GWd/MTU are in progress.  The Japan Atomic Energy Research Institute (JAERI) is developing a database of
spent fuel measured isotopic data.  Also, a program to verify fission product cross-section data is being planned for
the tank critical assembly (TCA).  It is suspected that the verification will use reactivity worth measurements
similar to those utilized in the French program at Cadarache.  The end goal for JAERI is a burnup credit guide,
which is in the planning stages.  Similarly, the Japan Institute for Nuclear Safety is developing burnup credit
criteria that will be used by operating fuel cycle facilities.  Representatives from JAERI indicate continued interest
in utilizing advanced subcritical measurement techniques to expand their capabilities for validation in conjunction
with burnup credit issues. 
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At ICNC’99 there were several papers from Japan on the topic of burnup credit.  Several were on measurement
techniques for burnup.  One area where the Japanese have considerable interest and where collaboration could be
helpful to U.S. efforts is relative to burnup credit for BWR spent fuel.  Evidence of this is the fact that they had two
papers relating to BWR burnup credit for transport and storage at the recent ICNC’99. 

Belgium

Even though the French have conducted a rather extensive experimental program within the confines of French
proprietary interests, Belgonucleaire is seeking a commercial market for their development of experimental
programs related to nuclear technology.  Of interest to the area of burnup credit is the ARIANE program, which
was begun in 1995 to assist in characterizing spent fuel isotopic data from MOX assemblies.  As a baseline for the
program, limited PWR and BWR UO2 fuel rods were assayed.  This program is scheduled to be completed in
March 2000, and the assay data will be available for public release after two years.  The assay data should be of
some benefit to studies related to the NRC research program since it contains MOX fuel and UO2 with burnups
over 50 GWd/MTU. 

Belgonucleaire is currently seeking joint funding participation to support the REBUS program  & an experiment to
measure the reactivity worth of various spent fuel assembly segments within a research reactor environment (the
LR-0 reactor in Czech Republic or the VENUS reactor in Belgium).  The program currently plans to use 1-meter
segments of PWR commercial fuel (4-wt % initial enrichment and 60 GWd/MTU) and MOX and UO2 fuel from
the BR3 research reactor (20 to 30 GWd/MTU).  Thus, although the reactivity worth should be larger than seen in
the French reactivity worth experiments with small samples, the range of characterizing parameters (burnup,
initial enrichment, etc.)  program is more limited.  Also, the extensive research program to understand and
separate the physics effects (e.g., the doped fission product samples of the French work) is not present.  However,
the REBUS program will provide destructive assays of the fuel to obtain isotopic compositions and axial gamma
scans of the measured assemblies will be used for establishing the burnup profile. 
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