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Abstract: Recent trends in Monte Carlo code development have reflected a 
recognition of the benefits of using deterministic importance functions for Monte 
Carlo variance reduction. This paper offers a review of the use of deterministic 
importance functions for variance reduction of Monte Carlo simulations. Adjoint 
methodology and the concept of “importance” are presented, along with an 
explanation of their use for variance reduction. Relevant works from a number of 
different researchers are briefly reviewed. The authors’ CADIS methodology for 
calculating consistent source biasing and weight window parameters based on 
deterministic importance functions is presented. Efforts to automate the 
generation and use of deterministic importance functions are briefly described, 
including an overview of the A3MCNP code. Finally, aspects of interest, including 
computational benefits, associated with using deterministic importance functions 
for Monte Carlo simulation of real-world problems are demonstrated. 0 2003 

Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The Monte Carlo method is one of the most accurate techniques for particle transport simulation. The 
method is applied to two major classes of nuclear problems: 1) fixed-source/shielding and 2) 
eigenvalue/criticality. Fixed source prohlems mainly involve transport of particles through thick shields that 
may cause a significant amount of absorption and/or scattering (isotropiclanisotropic), resulting in 
significant changes in particle energy and direction. This means that particle count in small energy bins 
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and/or localized spatial regions may be extremely small, and consequently, a large number of experiments 
(histories) and long computational times are needed to achieve statistically reliable results. In eigenvalue 
problems, since the source is not known, there is an added difficulty associated with the need for achieving 
global source convergence before starting tally accumulation. For loosely coupled and/or sub-critical 
systems, this may result in false source convergence, impact the reliability of simulations, and ultimately 
lead to an under-estimation of the eigenvalue - which is a very troublesome safety issue. In recent years, 
some efforts have been devoted to performing Monte Carlo perturbation and depletion calculations that 
generally require even longer computing times. Monte Carlo perturbation for both fixed-source and 
eigenvalue problems has further difficulties associated with being able to distinguish between the statistical 

errors (RE = u”-) 
x 

and the change caused by a perturbation. Moreover, Monte Carlo depletion, because of 

the need for global results, generally requires impractically large amounts of computer time. 

Over the past several decades, a large number of techniques have been developed to reduce the variance of 
Monte Carlo calculations, referred to as variance reduction and/or biasing techniques. These techniques 
commonly modify the natural sampling procedure/formulation (related to physical laws of particle transport) 
to focus computational efforts on the simulation of “important” particles. To compensate for this 
modification and to conserve particles, each particle is given a statistical weight that is adjusted based on the 

following equality, 

W brawd PLifbmed = Wunkosed Pdf Imbwsrd 3 (14 

where pdf refers to the probability distribution of the physical process being sampled and w refers to the 
particle weight. It is worth noting that in special cases such as integer splitting (i.e., one particle is split into 
n particles), one considers a modified form of to Eq. la, given by 

n ’ Wbmd Pdfbrased = Wunbmred Pdfunbrased ’ 

wherepdfksed =pdfu,,bhsed = 1. In this situation the physical process is changed rather than the probability of 
its occurrence. 

The main difficulty associated with using variance reduction techniques is the determination of the problem- 
dependent variance reduction parameters present in the biased terms (i.e., pdfbksed or n). This paper reviews 
the use of deterministic importance functions for variance reduction of Monte Carlo calculations, with 
emphases on fixed-source/shielding problems. 

1.1 Background 
Variance reduction techniques can generally be classified into the following three categories: modified 
sampling methods (e.g., source biasing, implicit capture, discrete angle biasing, forced collisions, and 
exponential transformation), population control methods (e.g., splitting/roulette, weight cutoff, weight- 
windows, and stratification), and semi-analytic methods (e.g., point detectors and DXTRAN). A number of 
other techniques and/or modeling choices (e.g., point detectors and energy cutoff) may also be used to 
improve the efficiency of a Monte Carlo calculation; however these techniques are not generally considered 
to be variance reduction methods because they do not bias the random walk sampling. Standard 
“production” Monte Carlo codes such as MCNP (Briesmeister, 2000), MORSE (Emmett, 1975), MCBEND 
(Chucas et al., 1994), and TRIPOLI (Both et al., 1994) have numerous biasing techniques for different 
processes. Variance reduction techniques have been developed for optimization of different types of 
problems, resulting in numerous techniques. Among the variance reduction techniques, the transport biasing 
method of splitting/roulette has been the most effective and widely used approach for reducing the variance 
of Monte Carlo calculations (Lux and Koblinger, 1990). The technique of exponential transformation, which 
stretches the distance to collision in preferential directions, has been linked to the hypothetical zero-variance 
solution (Goertzel and Kales, 1958), but is plagued by the potential for large weight fluctuations. Dwivedi 
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(1982) and Gupta (1984) derived a combined scheme in one-dimensional (1-D) homogeneous slabs in the 
mono-energetic case with isotropic scattering, consisting of exponential transformation and an appropriate 
angular biasing for collisions such that the angular biasing nearly cancels the weight fluctuations caused by 
exponential biasing. From this work, the methods in TRIPOLI (Both et al., 1994; Both et al., 1990; Morillon 
et al., 1993), and more recently the LIFT method (Turner, 1996; Turner and Larsen, 1997), have been 
developed that incorporate the concept of a zero-variance solution with angular biasing, exponential trans- 
formation, and weight windows. While these methods rest on a solid theoretical base, they assume the 
spatial component of the solution to be an exponential and impose restrictions on the energy treatment 
(multigroup) and in some cases, the angular scattering treatment. Further, these methods tend to be more 
sensitive to the accuracy of the importance function, require additional user input, and are generally less 
statistically stable and applicable than the splitting/roulette methods alone (Booth, 1992). Nevertheless, 
when used properly and appropriately these combined methods can be extremely powerful. 

All variance reduction techniques require problem specific parameters that are dependent on the importance 
of particles with respect to the objective function, and therefore require experience and are difficult and time 
consuming to use. Booth and Hendricks (1984) state, “The selection [of parameters] is more art than science, 
and typically, the user makes a few short trial runs and uses the information these trials provide to better 
guess the parameters; that is, the user learns to adjust parameters on the basis of previous experience.” 

Responding to this difficulty and the concept of learning, a number of strategies for determining variance 
reduction parameters have been proposed and developed. MacDonald (1975) and MacDonald and Cashwell 
(1978) demonstrated that through the use of pattern recognition techniques, the calculation could learn and 
establish Monte Carlo splitting surfaces. The learning mechanics were quite involved, and the method 
worked with very limited success in complicated geometries. Deutsch and Carter (1977) showed that 
importances could be estimated at geometry surfaces during a forward Monte Carlo calculation, and 
subsequently used to assist the analyst in manually selecting variance reduction parameters. Goldstein and 
Greenspan (1980) developed a recursive (RMC) method for estimating the importance function distribution. 
The method involved extensively subdividing the geometric regions and solving the forward problem for 
region importances with varying degrees of accuracy. While this work was reasonably successful, it was 
concluded that for deep-penetration problems to be efficient, the relevant importance function distribution 
must be known with sufficient accuracy; insufficient accuracy can lead to significant errors in the prediction 
of the detector response. Further, Goldstein and Greenspan (1980) concluded that it is far better to invest 
more time in the importance estimation (the RMC calculation) than in the detector response calculation. 

Booth (1982) and Booth and Hendricks (1984) developed an importance estimation technique called the 
forward-adjoint generator, which has since become known as the weight-window generator (Booth, 1983) 
because it estimates importances to be used with the weight-window technique. The weight-window 
technique, which is available in the standard version of MCNP, is simply a spatial- and energy-dependent 
facility by which splitting and Russian roulette are applied. The importance is estimated as the ratio of the 
total score due to particles (and their progeny) entering a cell to the total weight entering a cell, in a forward 
Monte Carlo calculation. At the time, the development and implementation of the weight-window generator 
represented a significant advancement in automated variance reduction. 

Independently, another stochastic optimization method, the Direct Statistical Approach (DSA), was 
introduced by Dubi et al. (1982, 1990) and later extended by Burn (1990, 1995). In the DSA, expressions for 
the dependence of the second moment and the calculation time on the splitting parameters are derived. 
Hence, a unique and significant aspect of this method is that it explicitly attempts to minimize the cost of the 
calculation by considering both the computer time and the variance. In contrast, importance function based 
methods do not explicitly consider computer time, and thus the “optimum parameters” generated from 
importance function based methods can be far from optimal in terms of calculational efficiency. Splitting 
parameters are optimized based on initial “learning” calculations to estimate the second moment and time 
function. Similar to the weight-window generator, user intervention is required to adjust importances in 
regions that are poorly sampled and/or further subdivide the space and energy regions. 
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These stochastic approaches to estimating importances are basic to the forward learning Monte Carlo 
methods, and therein lies the fundamental difficulty. To accurately estimate the importance of a space- 
energy interval, a sufficient number of particles must pass through that space-energy interval and proceed to 
contribute to the objective. In practice, this condjtion is typically not met, and as a result, either no 
importance estimate or an unreliable importance estimate is generated for each space-energy interval (Booth 
and Hendricks, 1984; Culbertson and Hendricks, 1999). Therefore, current forward Monte Carlo importance 
generators are restricted by their statistical nature and are of limited use in multi-dimensional deep- 
penetration problems. In the absence of more sophisticated methods, however, the forward Monte Carlo 
importance generators, such as the weight-window generator, are very useful in the iterative process of 
determining variance reduction parameters (Booth and Hendricks, 1984; Booth, 1985a). 

As a result of the difficulties associated with statistical importance estimation, many Monte Carlo 
practitioners and code developers have turned to deterministic methods for generating problem-dependent 
importances, particularly for large/complex problems. It has long been recognized that the adjoint function 
(i.e., the solution to the adjoint Boltzmann transport equation) has physical significance as a measure of the 
importance of a particle to some objective function (e.g., the response of a detector) (Bell and Glasstone, 
1970). It is this physical interpretation that makes the adjoint function well suited for use as an importance 
function for biasing Monte Carlo calculations. Kalos (1963) described the importance sampling technique 
and its relation to an importance function and a zero variance solution. Coveyou et al. (1967) developed 
several formulations for using the adjoint (importance) function to reduce the variance, and showed the 
merits of the importance function for transport and source biasing. Following these works, a number of 
applications of deterministic adjoint solutions and approximate adjoint solutions were made with varying 
degrees of success. A number of these efforts are discussed individually in a later section of this paper. 

Although the idea of using deterministic adjoint (importance) hnctions for variance reduction of Monte 
Carlo calculations is not new, several issues related to obtaining and using the adjoint fi.mction remained 
unresolved. Specifically, issues associated with the generation and optimal usage of the deterministic 
importance function. For example, the creation of an input file for a deterministic transport code to perform a 
deterministic adjoint calculation requires substantial familiarity with deterministic methods and can be very 
time consuming. Therefore, automation of the deterministic adjoint calculation is necessary for being able to 
effectively reduce user and computation time requirements. 

To overcome the shortcomings of available variance reduction techniques, the authors have developed: (1) 
the CAJXS methodology, which provides formulations for consistent biasing of the source and transport 
processes based on deterministic adjoint fimctions, (2) algorithms for automatic generation of deterministic 
adjoint functions, and (3) algorithms for generation and usage of space- and energy-dependent source 
biasing parameters and weight windows. The CADIS methodology and aforementioned algorithms have 
been implemented into the MCNP code, resulting in a new version of the code, referred to as A3MCNP 
(automated adjoint accelerated MCNP). These developments are briefly reviewed in this paper. 

1.2 Outline 
The remainder of this paper is organized as follows. Section 2 reviews selected important variance reduction 
techniques used for shielding/fixed source problems. Section 3 discusses the deterministic adjoint 
methodology and its use in Monte Carlo variance reduction, including a review of independent efforts 
related to the use of deterministic importance functions for variance reduction. Section 4 describes the 
authors’ CADJS methodology for using deterministic importance functions for variance reduction. Section 5 
discusses the automation of the use of deterministic importance functions for variance reduction as 
implemented in the A3MCNP code. Section 6 discusses the application and performance of automated 
variance reduction (A3MCNP) for the solution of three real-world fixed-source problems of interest to the 
nuclear industry. Finally, summary and concluding remarks are offered in Section 7. 
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2. VARIANCE REDUCTION METHODS 

Variance reduction (biasing) techniques for Monte Carlo simulations can reduce the amount of computer 
time required for obtaining results of sufficient precision (Carter and Cashwell, 1975). The goal of all 
variance reduction techniques is to decrease the relative error, 

C 
RE=- 

JN’ 

where N is the number of samples (particle histories) and C = 3 is the relative error in the population of 
x 

samples. Decreasing RE is accomplished by either decreasing C or increasing N, for a fixed amount of 
computer time. Unfortunately, these goals often conflict with each other because decreasing C requires 
better information from each history, which typically requires more computer time per history (Booth, 
1985a). On the other hand, increasing N (for a fixed computer time) normally increases C because less 
computer time is spent per history. However, it is often possible to substantially decrease C without 
significantly decreasing N, and vice versa. Many of the techniques attempt to decrease RE by either 
producing or destroying particle histories, or both. In general, techniques that produce particles work by 
decreasing C (ideally much faster than N decreases) and techniques that destroy particles work by increasing 
N (ideally much faster than C increases). 

As mentioned, there are numerous variance reduction techniques/strategies available. However, not all 
techniques are appropriate for all applications, and some techniques tend to interfere with each other (e.g., 
create large weight fluctuations when used together), while others tend to compliment each other. Several of 
the more widely used techniques for fixed-source/shielding applications are briefly reviewed below; the list 
is by no means exhaustive. More complete discussions may be found in several of the references (e.g., 
Briesmeister, 2000; Cramer and Tang, 1986; Lux and Koblinger, 1990) 

2.1 Source Biasing 
The source biasing technique enables the simulation of more source particles, with appropriately reduced 
weights, in the more important regions of each variable (e.g.. space, energy, and angle). This technique 
consists of sampling the source from a biased (non-analog) probability distribution rather than from the true 
(analog) probability distribution, and then correcting the weight of the source particles by the ratio of the 
actual probability divided by the biased probability according to Eq. 1. Thus, the total weight of particles 
started iti any given interval is conserved, and an unbiased estimate is preserved. Source biasing is widely 
used to reduce the amount of computer time spent on simulating source particles in regions that do not 
contribute to the objective. The technique improves the information accumulated per particle history 
(decreases the average history variance), and thus decreases C. 

2.2 SDlitting/Roulette 
Geometric splitting/Russian roulette is one of the oldest and most widely used variance reduction 
techniques, and when used properly, can significantly reduce the computational time of a Monte Carlo 
simulation. The objective of this technique is to spend more time sampling important spatial cells and less 
time sampling unimportant spatial cells. This is done by subdividing the problem geometry into cells and 
assigning each cell i an importance Zi. When a particle of weight w, passes from a cell of importance Zi to a 
cell with higher importance Zj (Zi < Zi), the particle is split into v = Z/Zi identical particles of weight w,Jv. 
Conversely, if a particle of weight w, passes from a cell of importance Zi to a cell with lower importance Zk 
(Zi > Zk), Russian roulette is played and the particle is killed with probability 1 - (Z,JZ;!, or followed further 

with probability ZJIi and weight w0 xZi/lk. 

For the case in which v in an integer, the splitting process is straightforward. In contrast, when v is not an 
integer (i.e., ncvuz+Z), the splitting is more complicated. There are two common approaches to noninteger 
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splitting, which are referred to as “sampled splitting” and “expected-value splitting” (Booth, 1985b). In 
sampled splitting, n particles of weight w=w,,/Y are selected with probability q(n) = n+I-v, or n+l particles 
of weight w=wJ(n+l) are selected with probability q(n+l)=v-n. Sampled splitting conserves the total 
weight, but the weight of the individual split particles varies depending on the number of split particles 
chosen. In expected-value splitting, the expected number of particles. v. is always used to deterrnine the 
weight of the split particles. The number of split particles are selected from the same probabilities used in 
sampled splitting, but the weight of the split particles is always taken to be w=wJv. Consequently, an 
expected-value split may result in a total after-split weight of either n(wJv) or (n+Z)(wdv), and the weight is 
only conserved in the expected sense. However, unlike sampled splitting, there is no fluctuation in particle 
weight with an expected-value split. A theoretical comparison of the two techniques by Booth (1985b) 
concluded that the expected-value splitting is generally superior to sampled splitting, and hence the MCNP 
code uses expected-value splitting. 

Energy splitting/roulette is similar to geometric splitting/roulette except that the splitting/roulette is 
performed on the energy domain rather that on the spatial domain. Splitting generally decreases the history 
variance (decreases C) but increases the time per history (decreases N for a fixed amount of computer time), 
whereas Russian roulette decreases the time per history (increases N for a fixed amount of computer time). 

2.3 Weight-Window Technique/Weight-Window Generator 
The weight-window technique (Booth and Hendricks, 1984), as implemented in the MCNP code, is a space- 
and energy- (or time) dependent splitting/roulette technique. The weight-window technique splits or 
roulettes particles based on space- and energy- (or time) dependent importances. The user supplies a lower 
weight bound and the width of the weight. window for each energy interval of each spatial cell. If a particle’s 
weight is below the lower weight bound, Russian roulette is performed, and the particle’s weight is either 
increased to be within the weight window or the particle is terminated. On the other hand, if the particle’s 
weight is above the upper weight bound, the particle is split such that the split particles have weights within 
the weight window. No adjustment is performed if the particle’s weight is within the weight window. 

Although weight windows and a combination of geometric splitting/roulette and energy splitting/roulette are 
both means of describing space- and energy-dependent importances and involve splitting and roulette, there 
are several important differences (Booth and Hendricks, 1984). These include: (1) the weight window 
discriminates based on particle weight before any action is taken, whereas geometric and energy 
splitting/roulette are performed without regard for particle weight, (2) the weight window utilizes absolute 
weights rather than ratios of importances, (3) the weight window can be applied at surfaces, collision sites, 
or both, whereas splitting/roulette is performed at space and energy boundaries only, (4) the weight window 
can assist in controlling weight fluctuations introduced by other variance reduction techniques by attempting 
to force all particles within a given space/energy region to have an associated weight within the weight 
window for that space/energy region, (5) the weight window can be turned off in selected space and energy 
regions, and (6) the weight windows can be generated via the weight-window generator. 

The weight-window generator attempts to calculate the importance of each cell in the problem description. 
This is done by noting that the importance of a particle at a point in phase space is equal to the expected 
score a unit weight particle would generate. The importance of a cell can then be defined as the expected 
score generated by a unit weight particle after entering the cell. Thus, the cell’s importance can be estimated 
as (Booth and Hendricks, 1984) 

Importance = 
totalscore due to particles entering the cell __~-- 

’ total weight entering thecell 

The main difficulty associated with using this statistical importance generator comes from poor estimates of 
the importance function caused by the statistical nature of the generator, In other words, if a phase space is 
not properly sampled, either an unreliable importance estimate or no importance estimate will be generated. 
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As a result, the weight-window generator tends to require a crude approximation of the importance function 
in order to estimate a better one for subsequent calculations (Booth, 1985a). This typically leads to an 
iterative process, which ideally converges to an optimum importance function. A further difficulty has been 
the subdivision of the problem geometry to represent the variation of importance with the spatial weight 
windows (which were assigned to geometric cells). However, recent work (Liu and Gardner, 1997) has 
eliminated this difficulty by developing a geometry-independent weight-window generator. This capability 
has since been incorporated into the latest standard version of MCNP (Briesmeister, 2000). 

From the above discussion it should be clear that the weight-window technique is superior to the use of both 
geometric and energy splitting/roulette. The most notable advantages of the weight-window technique are 
the discrimination of particle weight before any action is taken, the control of weight fluctuations introduced 
by other biasing techniques, and the generation of the space-and energy-dependent importances (i.e., the 
weight-window values). The most notable disadvantage of the weight-window technique is that the 
generator requires considerable user understanding and intervention to work correctly and effectively 
(Booth, 1985a). 

2.4 Imnlicit Cadure 
Implicit capture, survival biasing, and absorption by weight reduction are synonymous, Implicit capture is a 
variance reduction technique that ensures that a particle always survives a collision (i.e., the particle is never 

absorbed). When implicit capture is used, rather than sampling for absorption with probability Q,, /btj 

(where Q,, and 6, are the absorption and total microscopic cross sections for nuclide i, respectively), the 

particle always survives the collision and is followed with a new weight, wg x(2- Q, /a,), where w. is the 

weight of the particle before the collision. Implicit capture can thus be thought of as a splitting process in 
which the particle is split into absorbed weight (which can be discarded) and surviving weight. The main 
advantage of implicit capture is that a particle that has reached the vicinity of the tally region is not absorbed 
just before a score is made. Implicit capture generally decreases the history variance (decreases C) but 
increases the time per history (decreases N for a fixed amount of computer time). 

2.5 Exoonential Transformation 
Exponential transformation samples the distance to collision from a non-analog probability density function. 
Specifically, it involves stretching the distance between collisions in the direction of interest and reducing 
the distance between collisions in directions of little interest by modifying the total macroscopic cross 
section by 

xc: =&Cl-pp), 

where Z: is the modified total cross section, C, is the true total cross section, p is the exponential transform 

parameter used to vary the degree of biasing Ip\ < 1, and ,u is the cosine of the angle between the preferred 

direction and the particle’s direction. The particle weight is adjusted so that the expected weight colliding at 
any point is preserved. It should be mentioned that the exponential transformation technique can produce 
large weight fluctuations and subsequently produce unreliable mean and variance estimates. Exponential 
transformation generally decreases the history variance (decreases C) but increases the time per history 
(decreases N for a fixed amount of computer time). 

2.6 Problem Truncation 
Although not generally considered to be a variance reduction technique, modeling assumptions that truncate 
the scope of a problem can be very effective for variance reduction. A simple example is geometry 
truncation, in which a finite calculational model with vacuum boundary conditions only includes regions that 
are important to the problem objective. Another example is when energy truncation is used to eliminate low 
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energy particles in problems in which the problem objective is not sensitive to low energy particles and the 
low energy particles have no means to gain sufficient energy to become important to the problem objective. 

These problem truncations are not generally considered to be variance reduction methods because they do 
not involve a modification to the particle weight - a particle history is simply terminated if it exists the 
problem boundaries (e.g., space, energy, time). Unlike most variance reduction techniques, a poor problem 
truncation assumption (e.g., that neglects an important part of the problem), will not be apparent via unusual 
or erratic statistical convergence behavior. However, similar to other variance reduction techniques, problem 
truncation increases N for a fixed amount of computer time. 

3. VARIANCE REDUCTION USING DETERMINISTIC “IMPORTANCE” FUNCTIONS 

Variance reduction techniques require the assignment of input parameters by the user. These input 
parameters are dependent on the importance of particles with respect to the problem objective (i.e., an 
importance function), and therefore require a priori knowledge of the problem physics. Consequently, the 
use of variance reduction methods in Monte Carlo is not straightforward, and effective use of variance 
reduction methods typically requires a great deal of knowledge, experience, time, and effort. In practice, a 
manual iterative process is performed to develop the variance reduction parameters, converging to some 
acceptable level of calculational efficiency. Unfortunately, the appropriate variance reduction parameters 
vary significantly with problem type and objective. Therefore, the manual iterative process must be repeated 
to determine the variance reduction parameters for calculations (even for the same problem) with different 
objectives (e.g., different dose locations and/or reaction rates). A further difficulty lies in the statistical 
convergence of Monte Carlo results. For large complex applications, it is not uncommon for a Monte Carlo 
practitioner to spend days (or longer, depending on the problem, the user’s experience, and the desired 
precision) iterating and adjusting the variance reduction parameters only to achieve reasonable efficiency 
with unstable statistical behavior. Variance reduction methods can exhibit unstable statistical behavior even 
when good importance functions are available. This unstable statistical behavior is an indictor of unreliable 
confidence intervals and potentially erroneous results, which, depending on the user’s experience, may or 

may not be apparent to the user. 

Although manually applied variance reduction by expert Monte Carlo practitioners has demonstrated 
potential for increases in computational performance on the order of thousands, a reliable automated 
variance reduction capability based on a deterministic importance function could yield superior 
computational performance and convergence reliability, while at the same time significantly reducing the 
requirements for user expertise, time, and effort. Generally speaking, one expects increased reliability with 
the use of accurate importance functions; however, depending on the problem characteristics and the 
variance reduction techniques involved, increased reliability may not always be achieved. 

Recent trends in Monte Carlo code development have reflected a recognition of the benefits of using 
deterministic importance functions for Monte Carlo variance reduction (Larsen, 1999). In the following 
subsections, we introduce the adjoint transport equation and the importance function, and review its use for 
variance reduction of Monte Carlo simulations, including a brief review of research efforts in this area. 

3.1 Adioint Transport Ectuation 
The linear time-independent Boltzmann transport equation for a non-multiplying system (Bell and 
Glasstone, 1970) expresses the particle balance in a phase space as 

where 

(W 

(5b) 
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0, is the differential scattering cross-section. 0, is the total cross-section, I,V is particle angular flux, q is 

particle source, and V refers to volume. 

For a special case with vacuum boundary condition, i.e., “forward” flux is 

and adjoint function is 

v(r,E,@=O for ii.GilO onA 

$(r,E,fi)=O for ri.b>O onA, 

one can demonstrate the following “adjoint property”, 

(v+.HUr) = (lu,H’v’), 

(64 

(6b) 

(7) 

is preserved and that the adjoint operator H+ is given by 

Here s refers to the unit outward normal to the surface A and the Dirac signs, ( ), refer to integration over 

all independent variables, including space, energy, and angle. Note that H (“forward” operator, Eq. 5b) and 
H’ (“adjoint” operator, Eq. 8) differ in the first and third terms, indicating a reversal of energy and 

directional transfers. To determine the adjoint function, w+, one solves an equation of the form 

H+$ = q+ in V, (9) 

where q+ is the adjoint source. 

3.2 Adioint Methodology 
In this section, we introduce the use of the adjoint function (“adjoint methodology”) through a simple 
example. Consider one is interested in determining the response, R, of a detector of volume Vd placed at a 
position in a volume V, which is placed in a vacuum. Based on the “forward’ transport equation (Eq. 5), the 
formulation for response is given by 

(10) 

where a, is the detector cross-section (i.e., response function). 

It is possible to derive an alternate formulation for the detector response in terms of the adjoint function. For 
this, we form the commutation relation between Eqs. 5a and 9. This means that we multiply the “forward” 
equation by the adjoint function and the adjoint equation by the flux, integrate both equations over all 
independent variables, and form their difference as given below 

(w’ Hv) - (v H+v+) = (Y’+ 4) - (‘a+) (11) 

As discussed in Section 3.1 for a vacuum boundary condition, the left-hand side of the above equation is 
equal to zero, thereby reducing to 
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(vq’) = (w’ 9) (12) 

Now, if we consider 

9 +=cJ 
d’ (13) 

the left-hand side of Eq. 12 is the detector response (i.e. Eq. 10). Consequently we have derived an alternate 
formulation for the detector response in terms of adjoint function as 

R=(Y+4)7 (14) 

where the adjoint function is determined via 

H+yr+ =ad, 

v/+=0 for j?.h220 onA. 

Wa) 

(15b) 

The detector response, R, is given by the integral of the adjoint weighted source distribution. Thus, once the 
adjoint function is calculated for a given detector (or objective), responses from different sources can be 
determined by simple integration. This characteristic makes the adjoint function very useful for perturbation 
type studies. 

3 3 “Imnortance” Function and its Relation to the Adioint Function L 
If we consider a point source of the form 

q(F, E,i-i) = 6(r - r,)6(E - E,)S@ - ho), (164 

in Eq. 14, we obtain 

R= ty+(~,E,&). (16b) 

Therefore, the adjoint function is the contribution from particles produced at c,E,,,h o to the detector 

response. It is this physical interpretation that makes the adjoint function well suited to variance reduction of 
Monte Carlo simulations. 

In Sections 3.1 and 3.2, we demonstrated that when a vacuum boundary condition is valid, one can derive a 
formulation for H’ and detector response in terms of the adjoint function. This, however, has limited use 
because it is only true for the vacuum boundary condition. 

By using the physical interpretation of the adjoint function, it is possible to derive a balance equation for 
particle “importance”. This balance equation has an operator equivalent to the adjoint operator (Eq. 8), 
however, it is applicable for any arbitrary boundary condition. Hence, the adjoint function refers to a particle 
property, which is the “importance” of a particle with respect to some objective. Because of the similarity of 
the operators, “importance” is commonly referred to as the adjoint function (or flux). 

3.4 Use of Adioint (Imnortance) Methodoloev for Monte Carlo Variance Reduction 
Recognizing the physical interpretation of the adjoint hmction as an importance function, a number of works 
have utilized it for biasing Monte Carlo calculations. Kalos (1963) described the importance sampling 
technique and its relation to an importance function and a zero variance solution. Coveyou et al. (1967) 
developed an inverse relation between particle statisticai weight and the importance function and showed the 
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merits of the importance function for transport and source biasing. Recognizing the advantages associated 
with using deterministically generated adjoint functions for variance reduction, a number of research efforts 
have applied deterministic adjoint solutions and/or approximate adjoint solutions with varying degrees of 
success. Early work involved the use of deterministic importance functions for simplified, problem-specific 
tools with notable success. Following successful demonstration of feasibility, efforts turned toward general 
multi-dimensional applications and automation. A brief review of a select number of independent efforts to 
use deterministic importance functions for biasing Monte Carlo calculations is presented below, followed by 
an introduction to the authors’ contributions to this area. 

One of the early efforts in this area was by Tang et al. (1976; Tang and Hoffman, 1988), which used two- 
dimensional (2-D) discrete ordinates (SN) adjoint functions from the DOT code (Rhoades and Mynatt, 1973) 
to bias multigroup MORSE (Emmett, 1975) Monte Carlo calculations. With the limitation to multigroup 
Monte Carlo, the source, transport, and collision processes were all biased. Biasing capabilities that utilized 
the adjoint function included source energy biasing, energy biasing at collision sites, splitting and Russian 
roulette, and path-length stretching. The biasing of the collision and transport kernels was possible because 
of the multigroup formulation. The work was extended to include automation of the biasing procedure for 
spent fuel cask dose calculations using 1-D SN adjoint functions, culminating in the SAS4 sequence (Tang, 
1998) of the SCALE code package (SCALE, 2001). 

Miller et al. (1990) developed an automatic importance generator for space- and energy-dependent 
geometric splitting and Russian roulette based on adjoint diffusion calculations and have incorporated this 
feature into the MCBEND code (Chucas et al., 1994). The importances are generated on a user-defined 
three-dimensional (3-D) orthogonal mesh and the diffusion coefficients are modified to provide a closer 
approximation to transport theory. The technique has been successfully applied to a number of practical 
applications (Chucas and Grimstone, 1994; Shuttleworth et al., 2000). The developers note, however, 
limitations in its ability to produce efficient importance maps in geometries that are dominated by voids and 
ducts and are pursuing other techniques for such situations (Shuttleworth et al., 2000). 

Mickael (1992, 1994) developed a modified version of MCNP that performs an adjoint diffusion calculation 
to generate weight-window parameters for nuclear well-logging calculations. A short analog Monte Carlo 
simulation is performed to obtain effective group parameters for a 1-D or 3-D adjoint diffusion calculation. 
The mesh for the diffusion calculation is user-defined and the solution of the time-dependent adjoint 
diffusion calculation is used to assign weight-window values. The implementation is focused on the nuclear 
well-logging application and has been demonstrated for neutron, photon, and coupled neutron-photon 
problems. A recent complimentary work (Gardner and Liu, 1999) has utilized Mickael’s approach for 
generating a 1-D adjoint function and used the adjoint function as a first estimate for their 3-D geometry- 
independent weight-window generator (Liu and Gardner, 1997) for the simulation of a neutron oil well- 
logging tool. 

Responding to apparent needs for a more general and efficient Monte Carlo-based tool to simulate 
computationally challenging nuclear well-logging problems, researchers at Los Alamos National Laboratory 
developed the AVATAR method (Van Riper et al., 1997). The adjoint function and adjoint current, as 
calculated by the 3-D SN THREEDANT code (Alcouffe et al., 1995), are used to generate space- energy- 
and angular-dependent weight windows. A significant aspect of this work is the angular dependence within 
the weight-window technique, which is based on the approximation that the angular adjoint function is 
symmetric about the average adjoint current vector. The lower weight-window boundary in each spatial 
mesh and energy group is set equal to the inverse of the scalar adjoint function. The weight window lower 
boundaries are then normalized to a particular source location and energy, and consequently the inherent 
coupling between source and transport biasing is not taken into account. Incompatibility between source and 
transport biasing has been shown to be problematic due to calculational inefficiency and false convergence 
(Hendricks and Culbertson, 2000). Originally, this work utilized an interface code to automate the 
determination and utilization of the adjoint function, including mesh generation for THREEDANT. 
However, it is our understanding that difficulties with the automation process/code have not been overcome 
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and that, while MCNP version 4C (Briesmeister, 2000) can now utilize fine-mesh cell-independent weight- 
window values (e.g., horn a deterministic calculation), the user must generate and supply the weight- 
window-values and corresponding spatial and energy grid. A recent AVATAR-related effort (Evans and 
Wareing, 1999) has applied a 3-D unstructured-mesh discrete ordinates code to generate the adjoint function 
on a tetrahedral mesh to solve neutron and gamma oil well-logging problems. 

Turner and Larsen (1997) have developed the Local Importance Function Transform (LIFT) method, which 
uses deterministic adjoint solutions to bias the source distribution, distance-to-collision, and selection of 
post-collision energy group and direction for multigroup Monte Carlo calculations. Significant aspects of 
this work are that it approximates a zero-variance method and source, transport, and collision processes are 
all biased via an analytic expression for the importance function. The analytic expression assumes linearly 
anisotropic importance and is limited to multigroup. 

The TRIPOLI Monte Carlo code includes several advanced biasing schemes, including exponential biasing, 
quota sampling, and collision biasing, that require an importance function (Both et al., 1994). The 
importance function may be generated on the user-defined mesh by a method based on graph theory or 
solution of the adjoint transport equation via collision probabilities. To overcome some 
limitations/difficulties with these importance generation techniques, recent work (Giffard et al., 1999) has 
utilized a 2-D discrete ordinates code for generation of importances. The scalar adjoint function is mapped 
onto a user-defined Monte Carlo importance grid in space and energy. In this work, the deterministic adjoint 
solution is used to bias the source and transport kernels, including splitting and Russian roulette. 

Barrett and Larsen (1999) have recently examined the use of approximate deterministic adjoint functions 
with variational methods (Bell and Glasstone, 1970) for the purpose of Monte Carlo variance reduction, 
referred to as Variational Variance Reduction (VVR). In this variational method, approximate or low- 
accuracy forward and adjoint solutions are combined via a functional to calculate a parameter with higher 
accuracy. Barrett and Larsen have investigated the potential of this approach for 1-D mono-energetic fixed 
source and eigenvalue problems using deterministic and Monte Carlo methods for the adjoint and forward 
solutions, respectively. By itself, this VVR method differs from traditional variance reduction methods in 
that it does not involve a modification to the particle weight in the Monte Carlo transport process. Barrett 
and Larsen have, however, employed the VVR method in conjunction with other variance reduction methods 
that do involve modification of particle weight. Extension of this work to energy-dependent multi- 
dimensional problems is currently being explored. 

The authors’ first application of deterministic importance functions (Wagner and Haghighat, 1995; 1996) 
was motivated by the computational expense associated with performing Monte Carlo reactor dosimetry 
calculations and the time and effort associated with manual developing variance reduction parameters for 
this application. The MCNP code was modified to (1) process adjoint functions from the 2-D SN DORT code 
(Rhoades and Childs, 1988), with an approximate shape function for the third dimension, into space- and 
energy-dependent source biasing parameters and weight window lower bounds and (2) superimpose and 
utilize the fine-mesh (MCNP cell-independent) weight-window values. Due, in part, to the importance of 
source biasing for the reactor dosimetry calculation, we deviated from the standard inverse adjoint relation 
for particle statistical weight and used the concept of importance sampling to derive consistent relations for 
source biasing parameters and weight window lower bounds (Wagner, 1997; Wagner and Haghighat, 1998). 
We refer to our method as Consistent Adjoint Driven Importance Sampling (CADIS). Following successful 
demonstration of this method, our efforts turned to automation of the generation and use of 3-D adjoint 
functions from the TORT code (Rhoades and Simpson, 1997). These efforts led to the development of the 
A3MCNP (Automated Adjoint Accelerated MCNP) code (Wagner, 1997). The following sections will 
describe in greater detail our CADIS methodology, implementation of the methodology, development of 
A3MCNP, and finally, applications of the A3MCNP code for real-world shielding/fixed-source problems. 
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4. CADIS METHODOLOGY FOR USING DETERMINISTIC IMPORTANCE FUNCTIONS 

In this section, we review the theory of the CADIS (Consistent Adjoint Driven Importance Sampling) 
methodology, which includes formulations for source and transport biasing parameters and their 
implementation within the weight-window technique. 

4.1 Source Biasing 
In particle transport, the goal of most Monte Carlo simulations is to calculate the response (i.e., flux, dose, 
reaction rate, etc.) at some location. This is essentially equivalent to solving an integral of the form 

R = jpdf’qj (PMP) 1 (174 

or its equivalent in terms of the adjoint function given by 

R = @W-W+ (PI 3 (17b) 

where P refers to independent variables (Y,E,h) . To solve the latter integral with the Monte Carlo method, 

the independent variables are sampled from q(P), which is not necessarily the best probability density 
function (PdJ) from which to sample. An alternative pdf, ij( P) can be introduced into the integral as follows: 

R=jpdP q(y&;(P’B(P) ) (18) 

where q(P) > 0 and IpdPG(P) = 1. From importance sampling (Kalos and Whitlock, 1986), the alternative 

pdf, (i(P) that will minimize the variance for R is given by 

G(p) = w’u%(P) 
R 

(19) 

If the final result, R, is known, then the Monte Carlo integration will return R with zero variance. However, 
in practice, the adjoint function is not known exactly, R cannot be solved by direct integration, and thus, it is 
necessary to simulate the particle transport. For this process it is desirable to use the biased source 
distribution in Eq. 19 that, in the limit of an exact adjoint, leads to a zero-variance solution. 

Examining Eq. 19 reveals that the numerator is the detector response from phase-space P, and the 
denominator is the total detector response, R. Therefore, the ratio is a measure of the contribution from 
phase-space P to the detector response. Intuitively, it is useful to bias the sampling of source particles by the 
ratio of their contribution to the detector response, and therefore, this expression could also be derived from 
physical arguments. 

Since the source variables are sampled from a biased pdf, the statistical weight of the source particles must 
be corrected according to Eq. 1 such that 

w(P)ij(P) = w,q(P), G?O) 

where wg is the unbiased particle starting weight, which is set equal to 1. Substituting Eq. 19 into Eq. 20 and 
rearranging, we obtain the following expression for the statistical weight of the particles 
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R 
W(P) = --. 

V’(P) 
(21) 

This equation shows an inverse relationship between the adjoint (importance) function and the statistical 
weight. Previous work (Coveyou, 1967) had assumed this relationship and showed it to be near optimal, and 
others have verified this relationship through computational analysis. However, we have shown that this 
relationship may be derived from importance sampling. 

4.2 Transvort Biasing 
To obtain a formulation for transport biasing, we start with the integral form of the linear Boltzmann 
equation given by 

pm? = pw’+ P)v/(P’)dP’+q(P), (22) 

where K(P’+P)dP is the expected number of particles emerging in dP about P from events in dP’ about P’, 
and q(P) is the source density. If Eq. 22 is multiplied by 

V’(P) 

R ’ 
we obtain a formulation for the transport equation with a biased source as 

v+ (P> 
p(P) = IK(P’+ P)v(P’)RdP’+ij(P), (23) 

where 

Q(p) = v+vw(p) 
R 

and G(P) is the biased source given by Eq. 19. Further, if we rewrite the integral term in the above equation 

in terms of the new function e(P), Eq. 23 reduces to 

@(P) = jK(P’+ P)ip(P’) v+(p) ---dP’+ij(P) 
v’(P’) 

or 

C(P) = j&P’ -+ P)@(p’)dP’+G(P) 

where i is the biased transport operator (kernel) given by 

k(PV-+ P) = K(P’+ P)y’o. 
v/+ (P’) 

(24) 

(25) 

The above equation is the formal expression of the biased transport operator, which is derived from the 

biased source formulation. This expression, generally, is of little practical use, because the K(P’+P) 
operator is not known. However, it suggests an approach for altering the number of particles that are 
transferred from one phase space to another. For example, if the phase space P has a higher importance than 

the phase space P’, particles are split based on the ratio of the importance function (i.e., ~ “(‘) ), while if 
Vv’(P’) 

the opposite is true, the particles are rouletted. Following this split/roulette process, to preserve the expected 
number of particles, the particle statistical weight following the transport is modified according to 
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w(P) = w(P) 
[ 1 
E . (26) 

In the CADIS methodology, we utilize Eqs. 19 and 21 for calculating source biasing parameters and 
transport biasing parameters (for the weight-window technique), respectively. To administer the splitting and 
rouletting of particles, we use the weight-window technique, which deals with particle weights. We have 
related these weights to particle importance via Eqs. 21 and 26. Since these relationships for the particle 
statistical weights, which are used in source sampling and the particle transport process, were derived from 
importance sampling in a consistent manner, we refer to the use of these formulations as Consistent Adjoint 
Driven Importance Sampling (CADIS). 

4.3 Implementation of CADIS in MCNP 
To calculate the source biasing parameters over the phase-space (space, energy, and angle) the source from 
the forward calculation is coupled with the adjoint function as shown in Eq. 19. Further, the particle 
transport is biased via Eqs. 21 and 26. 

The space, energy, and angular dependent adjoint function may require a significant amount of storage, 
particularly for large 3-D problems. For example, the adjoint function for a 3-D problem with 100x100x100 
spatial meshes, 50 energy groups, and 80 directions (Ss) is 4E+09 values that, for double precision, require 
32 gigabytes of storage. The SN method can determine the angular independent (or scalar) adjoint accurately, 
but not necessarily the angular dependent adjoint because of the limited number of directions. Therefore, 
because of the memory requirements and inaccuracies of the angular dependent adjoint, we use the space 
and energy dependent (scalar) adjoint function, 

@+(Y,E) = 
I 4n 

dChy+(J,E,@, (27) 

for calculating space- and energy-dependent source biasing and weight-window parameters. Note that for 
problems with significant angular dependence (e.g., problems with ducts and/or voids), the use of angular 
importances is desirable. However, for such problems, “ray effects” can cause significant inaccuracies, even 
in the scalar adjoint function. Hence, accurate determination and efficient usage of angular-dependent 
importances remains an area for future work. 

4.3.1 Source biasing. Source biasing allows the simulation of a larger number of source particles, with 
appropriately reduced weights, in the more important regions of each variable (e.g., space, energy, and 
angle). This technique consists of sampling the source from a biased (non-analog) probability distribution 
rather than from the true (analog) probability distribution, and then correcting the weight of the source 
particles by the ratio of the actual probability divided by the biased probability according to Eq. 1. Thus, the 
total weight of particles started in any given interval is conserved, and an unbiased estimate is preserved. 

To accelerate the Monte Carlo calculation the source energy and position are sampled from the biased source 
distribution G(T, E) , 

4(r,E) = @+(~>E)q(~,E) = @+(~,E)q(Y,E) 
R 

ss v FI 
q(?,E)@‘(Y,E)drdE 

(28) 
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Physically, the numerator is the detector response from space-energy element ( d? , dE), and the denominator 
is the total detector response, R. Therefore, the ratio is a measure of the relative contribution to the detector 
response. 

4.3.2 Transport biasing. As mentioned, the weight-window technique, as implemented in the MCNP code, 
is a space- and energy-dependent facility by which splitting/roulette is applied. The weight-window 
technique provides an alternative to geometric splitting/roulette and energy splitting/roulette for assigning 
space- and energy-dependent importances. To use the weight-window facility within MCNP, we need to 

calculate weight window lower bounds W, such that the statistical weights defined in (Eq. 21) are at the 

center of the weight windows (intervals). The width of the interval is controlled by the parameter C,, which 

is the ratio of upper and lower weight-window values (C, = s). Therefore, the space- and energy- 

dependent weight window lower bounds w( are given by 

(29) 

and during the transport process the weight-window technique performs splitting or roulette according to Eq. 
26. In MCNP, the default value for C, is 5. Because the calculational efficiency has been observed to be 
fairly insensitive to small deviations in this parameter, the default value was employed throughout this work. 
It is important to note that because the source biasing parameters and weight window lower bounds are 

consistent, the statistical weights of the source particles (~(7, E) q(7, E) =-) are within the weight windows 
G(Y, E) 

as desired. Moreover, if the statistical weights of the source particles are not within the weight windows, the 
particles will immediately be split or rouletted in an effort to bring their weights into the weight windows 
(Briesmeister, 2000). This will result in unnecessary splitting/rouletting and a corresponding degradation in 
computational efficiency. For problems in which the adjoint function varies significantly within the source 
region (space and/or energy), this coupling between source and transport biasing is critical. 

5. DEVELOPMENT OF A CODE FOR AUTOMATED VARIANCE REDUCTION USING 
DETERMINISTIC IMPORTANCE FUNCITONS (A3MCNP - AUTOMATED ADJOINT 

ACCELERATED MCNP) 

The major difficulty associated with using deterministic adjoint (importance) functions for variance 
reduction of Monte Carlo simulations is the requirement for the deterministic adjoint solution. The 
determination of the adjoint function requires the generation of input files for the discrete ordinates adjoint 
calculation, which can be a difficult and time-consuming task that requires the user to be knowledgeable in 
Monte Carlo and deterministic methods and codes, which is not typically the case. To surmount this 
difficulty, we have developed strategies for automatically generating input files for discrete ordinates 
calculations, including mesh generation and material cross section preparation, directly from the MCNP 
input. This automation of the generation of the discrete ordinates input files not only eliminates the tedious 
process of manually generating these files; it requires very little experience on the part of the user with 
respect to discrete ordinates adjoint calculations. The coupling of the implementation of the CADIS 
methodology described in the previous section and the automatic generation of the deterministic adjoint 
solution has resulted in complete automation of variance reduction for MCNP shielding/fixed-source 
calculations. The modified version of the MCNP code that contains these features is designated A3MCNP 
(Automated Adjoint Accelerated MCNP). 
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A3MCNP performs the following tasks (Wagner, 1997): 
1) Prepares the necessary input files for a deterministic adjoint calculation 

l Generation of a mesh distribution for a deterministic adjoint calculation. Mesh generator utility first 
generates a uniform mesh distribution to extract information on material distribution, and then 
through a back-thinning process prepares a variable mesh distribution. 

l Preparation of input file for the TORT SN code (Rhoades and Simpson, 1997). 

l Determination of material compositions and preparation of input files for the GIP code (Rhoades, 
1978) for generation of multigroup cross sections. 

2) Reads the adjoint (importance) function from the standard TORT binary output file and prepares source 
biasing parameters and space- and energy-dependent weight window lower bounds via Eqs. 19 and 21. 

3) Superimposes the detailed weight window values (based on the deterministic spatial-mesh distribution 
and energy-group structure) onto the Monte Carlo model and uses them in a transparent manner. 

The flowchart in Fig. 1 presents the steps performed in an A3MCNP simulation. 

A Monte Carlo (MCNP) model or input file describes a problem in terms of combinatorial geometry and 
continuous energy, while a deterministic method requires discretization of the geometry, energy, and angle. 
Therefore, while the Monte Carlo input file contains most of the information necessary to generate a 
corresponding deterministic input file, further processing beyond simple translation is required. Specifically, 
the Monte Carlo geometry description must be appropriately discretized, a suitable energy group structure 
must be specified, the material cross sections must be prepared, and various remaining discrete ordinates 
input parameters must be defined (e.g., SS quadrature order is the default). Of these tasks, the discretization 
of the problem geometry is the most involved. 

The Monte Carlo geometry description must be discretized into a spatial mesh that is fine enough to 
adequately describe the material boundaries and enable a reliable deterministic calculations, while not being 
refined to the extent that the computational time and/or memory requirements for the deterministic 
calculation become prohibitive. It is not the intention of the adjoint calculation to solve ,the problem exactly, 
thus a compromise between accuracy and efficiency is required to achieve optimum overall efficiency (i.e., 
minimize total CPU time, which is a combination of the CPU time required for the TORT adjoint and Monte 
Carlo calculations). A number of studies (Wagner, 1997; Haghighat et al., 1999) have demonstrated that the 
effectiveness of adjoint functions for variance reduction is not overly sensitive to the accuracy of the adjoint 
solution. Further discussion on A3MCNP functions and features is provided in the references (Wagner, 
1997). The following section discusses application of A”MCNP to three important problems. 
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Fig. 1. Automated process for variance reduction with A3MCNP 

6. APPLICATION OF AUTOMATED VARIANCE REDUCTION (A3MCNP) TO REAL-WORLD 
SHIELDING PROBLEMS 

In this section we briefly describe the application of automated variance reduction, based on deterministic 
adjoint (importance) functions, to three real-world shielding problems; including pressurized-water-reactor 
(PWR) cavity dosimetry, displacement-per-atom (DPA) estimation at a boiling-water-reactor (BWR) core- 
shroud weld, and gamma dose estimation at the surface of spent nuclear fuel (SNF) storage cask. These 
problems address major concerns of nuclear utilities and are very important for the continued safe and 
economical operation of nuclear power plants. 

The authors’ earliest application of deterministic importance adjoint functions for variance reduction was for 
the PWR cavity dosimetry problem. This initial work used 2-D adjoint functions, and the process of 
generating the adjoint function was not automated. Following successful demonstration, the process was 
automated and applied to several other problems. The problem applications discussed below were chosen to 
describe/highlight characteristics of using deterministic importance function for variance reduction. The 
cavity dosimetry problem was used to examine the effect of adjoint accuracy on the effectiveness of variance 
reduction and compare calculational efficiency and reliability between manually developed variance 
reduction parameters and those based on a deterministic adjoint function. The BWR core-shroud analysis 
further explored the impact of adjoint accuracy on the effectiveness for variance reduction. Finally, the 
storage cask problem was used to investigate issues associated with using localized versus global adjoint 
sources to calculate dose profiles. 

6.1 Cavity Dosimetrv and Pressure Vessel Fluence for a PWR 

6.1.1 Problem description. The embrittlement of a reactor pressure vessel (RPV) is primarily due to the 
bombardment of high-energy neutrons and cannot be directly determined from measured quantities. Cavity 
dosimetry calculations attempt to estimate reaction rates in a small volume outside of the RPV at a distance 
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of -350 cm from the core centerline. These reaction rates are used to validate methods/models that are 
subsequently used to estimate the RPV neutron fluence. The problem is illustrated in Fig. 2, which shows 
one octant of the Three Mile Island Unit 1 (TMI- 1) reactor. 

6.1.2 Performance. Without the use of variance reduction techniques, one could allow MCNP to run this 
problem continuously for weeks and still not obtain statistically significant/reliable results (Wagner and 
Haghighat, 1998). In fact, this particular problem motivated the authors’ usage of deterministic importance 
functions for variance reduction. Before the CADIS methodology and the A MCNP code were developed, 
this problem was manually optimized (Wagner et al., 1996) with existing variance reduction methods, 
including source biasing, weight windows, exponential transformation, implicit capture, and energy cutoff. 
This manual optimization required a great deal of time and effort to develop, but proved to be successful in 
terms of both computational performance and calculational reliability (i.e., enabled problem objectives to be 
accomplished with available computational resources). During the development of the automated variance 
reduction methodology, the problem was used to evaluate the efficiency of the automated variance reduction 
approach (Wagner, 1997; Wagner and Haghighat, 1998). Initial application of the CADIS methodology, 
which was based on a 2-D adjoint function, increased the calculational efficiency by a factor of 4 with 
respect to our best manually optimized model and by a factor of -50,000 with respect to the unbiased case. 
Furthermore, the automated variance reduction approach required very little user time, effort, or experience. 

TMI- 1 concrete shield _ 

Fig. 2. One octant of the TMI- 1 reactor 

Since this was the first application of the CADIS methodology, a number of studies were performed to 
evaluate the relationship between the accuracy of the adjoint function and its effectiveness for variance 
reduction of the Monte Carlo calculation. The effect of reduced accuracy through the use of adjoint 
calculations based on reduced spatial, energy, and angular discretization were examined (Wagner, 1997; 
Wagner and Haghighat, 1998). The effectiveness of the adjoint function for variance reduction was found to 
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be rather insensitive to the accuracy of the adjoint function, and in some cases, due to the reduction in data 
volume and CPU time required for the discrete ordinates calculation, less detailed adjoint functions actually 
yielded greater overall efficiency. Similar findings have also been observed for another real-world problem 
discussed in next section. 

6.2 Simulation of a BWR core shroud 
The objective of this simulation is to investigate the role of radiation in the observed cracks in a BWR core- 
shroud welds. 

6.2.1 Problem descriution. The core shroud is an -5 cm thick stainless steel annulus located between the 
core and the vessel of a BWR. Fig. 3a shows the axial locations of the core-shroud welds (Hl to H8) relative 
to the reactor core and other structural components. Fig. 3b shows the radial position of the core shroud 
relative to the core and the jet pumps. 

The objective is to determine neutron and gamma flux distributions and DPA at the H2, H3, and H4 welds. 
Since welds are located above and below the core, and gamma rays are generated within the structural 

materials through (n,y) interactions (mainly from thermal neutrons), it is necessary to simulate neutrons of 
all energies (0 to 20 MeV) and gamma rays in a 3-D model. In this paper, we limit the discussion to our 
simulations for the H4 weld, which is located -63.5 cm above the core mid-plane (see Fig. 3a). We have 

developed a model of size 300x300~381 cm3. 

We determine the DPA at a small segment (2x2~2 cm3) of the H4 weld. (Note that we consider that the weld 
width (axially) is 2 cm.) To prepare multigroup cross sections for adjoint calculations, we utilize the BUGLE 
96 multigroup [47 neutron and 20 gamma] library (White et al., 1996). Further, for tallying, we use this 

library’s group structure. For the neutron source, we consider a uniform source distribution with a typical 
BWR spectrum. 

(a) Axial view of shroud, locations of welds (b) Radial position of shroud 

Fig. 3. Schematic of a BWR core shroud 

6.2.2 Performance. The performance of A3MCNP for different importance functions, corresponding to 
different spatial mesh distributions used for the deterministic SN calculations, has been examined. We have 
tested numerous cases (Haghighat et al., 1999), but for brevity, we will discuss only five cases with uniform 
meshes. As indicated in Table 1, the mesh sizes for these cases vary from 5-cm to 60-cm. Figs. 4a-4e show 
the x-y mesh distributions for each of the five cases. Note that in some of these cases, because of large mesh 
sizes, material regions are either approximated in size/position, or omitted altogether. 
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Table 1. Characteristics of the spatial mesh distributions for cases considered 

Case 
Total # of meshes Mesh size (x, y, z) 

(# of axial meshes) [cm1 

1 86400 (24) 5, 5, 15.875 

2 10800 (12) 10, 10, 31.75 

3 2700 (12) 20,20, 31.75 

4 1200( 12) 30, 30, 3 1.75 

5 300 (12) 60, 60, 3 1.75 

(b) Case 2 

(d) Case 4 (e) Case 5 

Fig. 4. Mesh distributions for different cases 

Fig. 5 compares the group-nine adjoint function distributions for different cases. As expected, due to the 
coarse meshing, the differences are very large (more than a few orders of magnitude). However, as it will be 
shown shortly, these very approximate distributions still yield significant speedups. 

Table 2 compares the DPA values, FOM values, relative errors, and speedups for the different cases after 
100 CPU minutes to the unbiased case after 2000 CPU minutes. As expected the cases with finer 
deterministic spatial mesh achieve better FOM values because their adjoint function distributions are more 
accurate. These results, however, do not include the effect of the SN TORT calculations. Hence, we have 
estimated the amount of CPU time necessary for achieving a relative error of 1% in each case, and then 
combined it with the corresponding SN CPU time. Table 3 compares the total CPU times for the biased cases 
to that of the unbiased case. 
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Fig. 5. Radial adjoint function distributions for different cases, group 9 (3.01-3.68 MeV) 

Table 2. Estimated DPA and associated statistics after 100 CPU minutes for 
the unbiased and biased cases 

# of meshes DPA Relative Error MCNP Speedup 
Case No. (# of axial meshes) [dpakec] l%l FOM FOMbiasedFOMunbiased 

Unbiased NIA 3.877E-10’ 14.97* 0.022’; 1 

1 86400 (24) 3.571E-10 1.05 90.7 4123 

2 10800 (12) 3.440E-10 1.35 54.9 2945 

3 2700 (12) 3.513E-10 2.46 16.5 750 

4 1200 (12) 3.512E-10 2.56 15.3 696 

5 300 (12) 3.470E-10 5.88 2.89 131 

* result after 2000 CPU minutes 

Table 3. Comparison of total CPU time (TORT + A3MCNP) to achieve 1.0% (10) 
statistical uncertainty for the unbiased and biased cases 

Case No. 

Unbiased 

1 

2 

3 

4 

5 

No. of meshes TORT A3MCNP Total Overall 
(# of axial meshes) [minutes] [minutes] [minutes] Speedup 

N/A N/A 448,201 448,201 1 

86400 (24) 424.6 110.3 534.9 838 

10800(12) 40.8 182.7 223.5 2005 

2700 (12) 10.2 604.8 615.0 729 

1200 (12) 5.0 655.2 660.2 679 

300 (12) 1.3 3461.4 3462.7 129 
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All the biased cases result in significant speedups over the unbiased case. Case 1 (with the most detailed 
mesh distribution) yields the shortest time for A3MCNP (because it uses the most accurate adjoint 
importance function), but the longest time for the TORT calculation. These results indicate that an 
approximate adjoint may yield a large speedup. For example, case 2 with -88% fewer meshes shows the best 
performance, and even case 5 which uses a very inaccurate adjoint function yields a net overall speedup of 
-130 as compared to the unbiased case. 

6.3 Simulation of a Storage Cask 
Here, we discuss the determination of gamma dose over the surface of a SNF storage cask. Further, we 
compare the effectiveness of A3MCNP for small, localized regions and large surfaces. 

6.3.1 Problem descrintion. To expand storage capacity and prevent premature plant shutdown, utilities are 
storing their SNF on-site in dry casks. Demonstration of compliance with the regulatory limits requires 
detailed multi-dimensional neutron and gamma transport simulations. Multi-dimensional Monte Carlo codes 
such as MCNP are used for this application. Because of the large size of the physical model (concrete casks 
are approximately 3.3 meters in diameter and 6 meters tall) and the need for detailed information with high 
precision, variance reduction methods are necessary. Here, we consider a model (Redmond and Anton, 
2000) of size 178.3x178.3x838.2 cm3 that includes a quarter of a 
concrete cask plus some volume of air as shown in Fig. 6. For this 
discussion, we evaluate the gamma dose on the outer surface of the 
cask as a whole, and over 19 axial segments between 30.48 cm and 
592.5 cm. The first 18 segments are 30.48 cm each, and the last 
segment is 13.38 cm. Figs. 7 show the gamma source distribution 
within a quarter of the storage cask. 

(a) Full (b) Axial projection 

concrete 1’ / 
I 

116.6cm 

638.2 cm 

592.5 cm 

482.3 cm 

air 

30.5 cm 

0.0 

Fig. 6. MCNP model 
of storage cask 

Fig. 7. Unbiased spatial source distribution in the storage cask 
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Note that the source distribution is assumed to be flat radially and axially within the active fuel region, and 
only changes axially above and below the active fuel. 

6.3.2 Performance. In order to assess the performance of A3MCNP, we ran the unbiased MCNP case for 

6000 CPU-rnin to achieve a 10 uncertainty of 0.0376 with a FOM of 0.12. Then, A3MCNP prepared a 
biased source distribution and weight-window lower bounds as discussed in Section 4.3. Figures 8 shows the 
biased source distribution, which differs significantly from the original, unbiased source distribution (shown 
in Figs. 7). As expected the intensity of the biased source decreases significantly as one moves toward the 
radial center of the storage cask; therefore, mainly the source particles on the cask periphery are sampled. To 
obtain the importance 
function, the TORT 
calculation required 
-20 min of CPU time. 
For the biased case, we 
ran A3MCNP for -180 

min and achieved a lo 
uncertainty of 0.0047 
and a FOM of 254. 
This means that to 
evaluate the dose over 
the whole cask surface, 
A3MCNP performs 
-2117 times faster 
than the unbiased case. 

We also examined the 
A3MCNP performance 
for evaluation of the 
axial dose profile (i.e., 
dose in localized axial 
regions). Note that we 
are using only one 
adjoint source that is 
uniformly distributed 
along the cask axis. In 
other words, particles 
are biased for reaching 
the surface rather than 

any specific axial 
segments. Fig. 9 shows 
the ratio of the FOM 
values (A3MCNP to 
unbiased MCNP) and 

(a) Full (b) Axial projection 

Fig. 8. Biased spatial source distribution in the storage cask 
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the FOM values for unbiased MCNP as a function of the axial position. As expected, the performance of 
A3MCNP improves significantly as one moves away from the fuel assembly mid-plane; this is especially 
evident at the regions above and below the fuel assemblies (i.e., ~l82.3 cm and ~116.55 cm). For example, 
for the segment in the range of 60.96 to 91.44 cm, A3&ICNP, after 200 min (including 20 min for TORT), 
yields a relative error of 0.072, while the unbiased case after 6000 min yield a relative error of 0.83; this 
indicates that the unbiased MCNP requires -569 CPU-days (1.6 years) in order to reduce the error to -7%. 
Note that for each axial segment, A3MCNP increases the FOM by a factor of more than 2000, as compared 
to the unbiased case. 
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Fig. 9. Comparison of A3MCNP performance to unbiased MCNP for 
determination of surface gamma dose of a storage cask 

7. SUMMARY AND CONCLUSIONS 

In this review paper, the use of deterministic “importance” functions for variance reduction of Monte Carlo 
simulations has been discussed. To illustrate the need for “importance” functions in general, several variance 
reduction techniques are described. In the absence of an appropriate importance function, effective use of 
these variance reduction techniques depends on the user’s ability to estimate particle importance and 
subsequently translate into appropriate VR parameters. While reasonable estimation of importance, based on 
experience and limited knowledge of the problem physics, is possible for simple problems (e.g., 1-D and/or 
mono-energetic), it is generally impractical and inefficient for complex real-world problems. 

Adjoint methodology and the concept of “importance” are presented, along with an explanation of their use 
for Monte Carlo variance reduction. Relevant works from a number of different researchers are briefly 
described. These works generally differ in the methodology used for generation of the “importance” function 
and/or the formulation used for variance reduction. It is noted that the majority of these efforts have focused 
on shielding/fixed-source problems, while very few investigations have addressed variance reduction for 
criticality/eigenvalue problems. 

A few groups have developed automated techniques and software for generation of the importance function. 
Among these, MCBEND, AVATAR, and A3MCNP have been used effectively for solving several complex 
real-world fixed-source problems. A3MCNP has been used to simulate the three problems discussed in this 
paper, which include cavity dosimetry for a PWR, DPA estimation at a BWR core shroud, and gamma dose 
estimation over the surface of a storage cask. These simulations have demonstrated that the automated use of 
deterministic importance functions (with A3MCNP) can yield speedups of several orders of magnitudes, that 
approximate “importance” functions are adequate, and that, as expected, the methodology is more effective 
for localized objectives. In addition, because of the consistency between source and transport biasing, the 
CADIS methodology has proven to be very effective for variance reduction of deep-penetration problems 
with a distributed source. 
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The authors believe that the use of deterministic “importance” functions for variance reduction of Monte 
Carlo simulations is very helpful, especially when dealing with large complex problems. The authors have 
demonstrated that automated tools can significantly reduce computation and engineer’s time. Further, the use 
of such tools can improve the use and reliability of Monte Carlo simulations. One aspect that has not been 
emphasized in this paper is the potential for unreliable or erroneous results due to improper use of variance 
reduction techniques, and the possibility that the incorrect results are not exposed. The use of automated 
tools for the generation and use of deterministic importance functions for variance reduction has notably 
reduced this problem for the classes of problems we have investigated. All of these aspects/benefits can have 
a significant impact on the economics and safety of nuclear systems. 
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