The vast agricultural and forest resources of the United States supply a variety of materials that go into making bioderived products, from biofuels to cosmetics to the plastic in soda bottles. Advancements in biomass technologies and applications build on years of research in conjunction with the US Department of Energy (DOE) BioEnergy Science Center at Oak Ridge National Laboratory (ORNL) and are continuing to move forward with the launch of the Center for Bioenergy Innovation, also led by ORNL scientists.

The aim of ORNL’s bioderived materials research is to develop methods and technologies that enable greater and higher value use of biomass to sustainably produce a wide range of high-performance products.

Bioderived materials research focuses on using a variety of strategically identified feedstocks and employing advanced processing methods to enable novel breakthroughs in fundamental science and product improvement.

Developing new materials

A cross-disciplinary team of scientists is combining fundamental knowledge about plant biology with expertise in manufacturing to identify efficiencies and create new uses for biomass, matching plant characteristics and processing parameters to the end product. Researchers are studying nanocellulose, lignin, biofibers, and renewable composites for 3D printing.

- **Plant biology and genetics**—Furthering an understanding of the relationship between genetics and plant characteristics based on studies of poplar trees, eucalyptus, and other feedstocks.

- **Conversion and engineering**—Examining ways to deconstruct plants into usable components without destroying inherent plant characteristics. Synergistically combining biological and chemical conversion to achieve higher yields and novel products.

- **Materials and manufacturing**—Exploring material compositions and manufacturing methods to create opportunities to add value to production streams and create new structural and functional materials.

"We’re exploring the many ways plants can be used to create renewable composites for 3D printing."

Soydan Ozcan, Materials Scientist

Engineering New Materials from Biomass

Applications

- Automotive parts
- Energy storage devices
- Molds and tools
- Packaging and insulation
- Biomedical devices

Soydan Ozcan, Materials Scientist

“...we’re exploring the many ways plants can be used to create renewable composites for 3D printing.”
Applications, Demonstration, and Industry Innovation

ORNL is a US leader in unclassified materials research and development, with particular emphasis on the array of materials derived from biological feedstocks, specifically woody and herbaceous biomass. These bioderived materials are based on common forms of naturally occurring polymers, including nanocellulose, lignin, and hemicellulose. ORNL is working to advance fundamental and applied research throughout the production pipeline, from feedstocks to conversion to demonstration.

Biomass from plants can be harvested, stored, processed, and transported to produce fuels or bioderived materials for 3D printing. By integrating basic and early-stage applied energy capabilities, ORNL is leading the way to developing new bioderived materials for a variety of applications, including large-scale additive manufacturing.

Partnerships and Collaborations

ORNL is partnering with the University of Maine in a unique collaboration to combine the laboratory’s bioscience, materials science, and additive manufacturing expertise and capabilities with the university’s focus on forest-based biomaterials for new composites and biobased structures to advance and support Maine’s forest products sector.

Contact:
Timothy J. Theiss
Bioenergy Technologies Program Manager
theisstj@ornl.gov, 865-946-1348
One Bethel Valley Road, Oak Ridge, TN 37831