Supercomputing and Computation


Energy Storage

A key component in reducing our nation's dependence on fossil fuels and diversifying our nation's energy sources will be the development of advanced electrical energy storage technologies. Efficient electrical energy storage systems can enable sporadic sources such as wind and solar to deliver more consistent power to the grid, and transitioning to hybrid and eventually all-electric vehicles will have a dramatic effect on both oil consumption and greenhouse gas emissions. However, particularly in the case of vehicles, development of safe, economical electrical energy storage systems with energy and power densities approaching those of gasoline will require significant scientific and engineering breakthroughs. These breakthroughs require an integrated approach, bringing the full breadth of experiment, theory, and simulation to bear on the challenges in order to achieve the understanding that will enable the development of new materials, chemical systems, and manufacturing processes necessary. We are developing computational tools needed to enable the much-needed improvements in battery technology, and also to specifically address safety issues for LIBs. In addition, these tools will be generally applicable to other energy storage devices, including future chemistries such as Li-Air, supercapacitors, hybrid supercapacitor-batteries, etc.



We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.