More Science


Theory, Modeling and Simulation

ORNL conducts a broad range of theoretical research in the physical sciences with over 60 staff members and additional students, post-doctoral associates and visitors. This work is tightly integrated with experimental programs and is committed to making effective use of modern theory and advanced computation to progress core science and technology. Efforts include a full range of theory activities, ranging from basic science aimed at providing the fundamental basis for long-term solutions to our energy problems, to near-term work addressing our nation's most pressing energy and security needs. Work is highlighted by:

  • Cross-cutting capabilities/efforts impacting multiple ORNL programs and activities centered on nanoscience, physics, chemistry, materials, and neutron science
  • New theory and computational approaches to establish and enhance links with experiments
  • First principles methods based on density functional theory, quantum chemistry, classical and ab initio molecular dynamics, transport theory, many-body theory, quantum Monte Carlo, field theoretic approaches, phase field analysis, and statistical mechanics
  • Guiding understanding and providing prediction of new materials, architectures and reactions before they are realized in the experimental labs
  • Illuminating connections between experimental observations across diverse characterization techniques
  • Identifying new synthetic pathways

For more information, please contact:

1-5 of 218 Results

Facets and disorder hold key to battery materials performance
— A synergistic combination of atomic-scale experiment and theory identify Ni antisites as the predominant defects in a lithium–manganese-rich cathode material. In addition, their formation energies are facet-dependent, with larger defect concentrations observed at open (010) facets.

Single Supported Atoms Participate in Catalytic Processes
— Researchers recently predicted and demonstrated that single supported Pt atoms are highly active for NO oxidation. This work will impact determining the optimum loading of noble metals on emissions-treatment catalysts and design of low-temperature catalysts.

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge
— Silicon anodes for lithium-ion batteries are capable of quickly delivering high power but charge at a much lower rate. High-power and high-rate performance of batteries is determined by the intrinsic electrochemical reaction rates. The forward and backward reaction rates for reversible electrochemical reactions are not necessarily identical.

Crown Ethers in Graphene Bring Strong, Selective Binding
— Researchers discovered the long-sought crown ether structures with perfect rigidity in oxidized atomic-scale holes in graphene. Calculations indicate that these “super crown ethers” provide unprecedented binding strength and selectivity. Thus, new supramolecular materials in which metal ions are trapped into arrays within the graphene plane are possible.

Strain-induced vacancy stability shown across an interface
— Density functional theory (DFT) calculations show that among the four types of (001) SrTiO3 | (001) MgO interface structures, the TiO2-terminated SrTiO3 containing electrostatically attractive MgO and TiO ionion interactions form the most stable interface.


We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.