Advanced Materials

Research Highlights for Functional Materials for Energy

1-10 of 36 Results

A High-Energy Solid State Battery with an Extremely Long Cycle Life
— A high-voltage (5V) solid state battery has been demonstrated to have an extremely long cycle life of over 10,000 cycles. For a given size of battery, the energy stored in a battery is proportional to its voltage. Conventional lithium-ion batteries use organic liquid electrolytes that have a maximum operating voltage of 4.3 V.

Thermopower Enhancement in Designer Oxide Superlattices
— A layer-by-layer design of 2D oxide superlattices with precisely controlled interface compositions has improved the thermopower of oxide thermoelectrics by 300% compared to that of bulk counterparts. Controlling the 2D carrier density through a new materials design strategy is critical for developing highly efficient thermoelectrics.

Structure-dependent Properties Guide Catalyst Design for Oxygenates Conversion
— The catalytic transformation of oxygenates (i.e. aldehydes, alcohols, ketones) on metal oxides to generate value added products such as fuels and additives is of great importance industrially, yet is not well-understood. ORNL researchers have provided new insights into how oxygenates react on metal oxide particles with well-defined structures.

Pulsed Laser Deposition of Photoresponsive Two-Dimensional GaSe Nanosheet Networks
— Researchers demonstrated a pulsed laser deposition (PLD) approach to synthesize networks of interconnected metal chalcogenide (GaSe) nanosheets that exhibit high photoresponsivity.

Cooperative Growth of Large Single-Crystal Graphene Islands
— Researchers showed that it is possible to grow large, single-crystal graphene islands by controlling the nucleation density, which determines the growth mechanism.

Atom Substitution Gives Stable Performance of Solid Electrolytes
— The substitution of Ge for As in Li3AsS4 results in an exceptionally stable ionic conductivity versus temperature, and enhances the ionic conductivity by two orders of magnitude. The performance of solid state batteries is dramatically sensitive to temperature due to the energy barrier associated with Li ion motion.

Origin of anomalous atomic vibrations in efficient thermoelectrics revealed
— Thermoelectric SnTe and PbTe compounds were investigated with inelastic neutron scattering (INS) and first-principles calculations to understand the basis of their anharmonic lattice dynamics. The phonon anharmonicity of these materials is of both fundamental importance and of practical interest.

A Bi-Functional Electrolyte Design for Long Lasting Batteries
— An innovative design of a bi-functional electrolyte defies the theoretical maximum energy capacity of conventional lithium carbon fluoride (Li-CFx) batteries. This novel design has the potential of enabling the creation of long lasting batteries for implantable medical devices, wearable electronics and other applications.

Light-emitting diodes from monolayer WSe2 p-n junctions
— Light emitting diodes (LEDs) with improved efficiency have been realized using monolayers of WSe2 carefully cleaved from high-quality bulk single crystals. This new development has the potential for applications in novel optoelectronic devices, such as on-chip lasers.

Decoding the Resistivity of Solid Electrolytes for Batteries
— The atomic-scale origin of grain-boundary (GB) resistance in solid electrolytes has been revealed by electron microscopy and spectroscopy. Inorganic solid electrolytes have the potential for enabling intrinsically safe, energy-dense batteries.


We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.