Advanced Materials

SHARE

R&D 100 Awards in Advanced Materials 2012


ORNL's NanoSHIELD Coatings team consisted of William Peter, Ryan Dehoff, Peter Blau, Craig Blue, Thomas King Jr., Art Clemons, John Rivard, Wei Chen, Andrew Klarner, Kevin Harper and Larry Lowe.

Researchers in the Advanced Materials area at ORNL recently received R&D 100 awards. The awards, presented by R&D Magazine, recognize the top 100 innovations of 2012. Department of Energy Secretary Steven Chu congratulated the 2012 R&D 100 award winners saying "The research and development at the Department of Energy's laboratories continues to help the nation meet our energy challenges, strengthen our national security and improve our economic competitiveness."

Nano-Super Hard - Inexpensive - Laser Deposited Coatings, or NanoSHIELD Coatings, were developed by ORNL in conjunction with Lawrence Livermore National Laboratory, Strategic Analysis Inc., Ozdemir Engineering Inc., Colorado School of Mines and Carpenter Technology Corp. ORNL's team consisted of William Peter, Ryan Dehoff, Peter Blau, Craig Blue, Thomas King Jr., Art Clemons, John Rivard, Wei Chen, Andrew Klarner, Kevin Harper and Larry Lowe.

NanoSHIELD is a protective coating that can extend the life of costly cutting and boring tools by more than 20 percent, potentially saving millions of dollars over the course of a project. It is created by laser fusing a unique iron-based powder to any type of steel, which forms a strong metallurgical bond that provides wear resistance between two and 10 times greater than conventional coatings. NanoSHIELD was designed to protect high-wear tools used for tunnel boring and construction, but its potential for Navy applications and geothermal drilling tools also is being explored.

The project was funded by the Defense Advanced Research Projects Agency, DOE's Loan Programs Office, the Office of Civilian Radioactive Waste Management, and Office of Energy Efficiency and Renewable Energy.

HiCap Adsorbents were jointly developed and submitted by ORNL and Hills Inc. The ORNL team consisted of Christopher Janke, Yatsandra Oyola, Chris Bauer, Xiao-Guang Sun, Costas Tsouris, Sheng Dai, Richard Mayes and Tomonori Saito.

Recent advancement in surface area modification has allowed HiCap Adsorbents, low-cost reusable materials, to selectively remove metals from aqueous environments. For example, HiCap's uptake of uranium is nearly seven times more than that of any similar product. The selective sorption capacity of heavy metals by HiCap can be used for potential nuclear energy and environmental applications.

The project was funded by DOE's Office of Nuclear Energy.

Asymmetric Rolling Mill: A Novel Route for Processing Sheet and Plate was jointly developed and submitted by FATA Hunter Inc., ORNL and Magnesium Elektron North America. The ORNL team consisted of Govindarajan Muralidharan, Thomas Muth, Evan Ohriner, William Peter, David Harper, Thomas Watkins, Eliot Specht and Alan Liby.

The Asymmetric Rolling Mill provides a way to efficiently process sheet and plate materials, accelerating the production and availability of low-cost magnesium. Magnesium is a lightweight metal that has practical applications in goods such as personal electronics and automobile production. Commercial use of magnesium has been limited because of the high cost associated with its multistep production process. This technology is likely to reduce processing steps, thereby reducing the cost of finished magnesium components and allowing for the replacement of aluminum with magnesium in many commercial goods. The widespread use of magnesium instead of aluminum in cars would reduce vehicle weight and lead to improvements in transportation by improving fuel economy.

Funding was provided by DOE's Office of Energy Efficiency and Renewable Energy with cost sharing from Magnesium Elektron North America.

Low-Cost Plasma Processing System for Research and Pilot Production, or LFRF-501, was jointly developed and submitted by Structured Materials Industries, ORNL and the University of California at Santa Cruz. ORNL's participants were Govindarajan Muralidharan, Parans Paranthaman, Tolga Aytug, Fred List and Harry Meyer III.

Structured Materials Industries collaborated with ORNL and the University of California at Santa Cruz to develop LFRF-501, a low-cost plasma generator for research, development and production of nanometer scale materials. Many new materials are being developed in the form of nanometer scale structures such as thin films, nanowires and nanocomposites. These materials are enabling new developments in many technologies, including microelectronics, renewable energy, sensors, LEDs and others. The LFRF-501 enables production of nanoscale materials at lower temperatures, faster rates and with enhanced properties.

The research was funded by DOE's Office of Energy Efficiency and Renewable Energy, and Office of Electricity Delivery and Energy Reliability.

Highest Pinning Force, High-Temperature Superconducting Wires with Double-Perovskite Tantalate Nano-Pinning Centers was jointly developed and submitted by ORNL and SuperPower Inc., a subsidiary of Furakawa Electric Company, Japan, and the University of Houston. The ORNL team consisted of Amit Goyal, Sung-hun Wee, Claudia Cantoni and Eliot Specht.

This technology allows high-temperature superconducting wires to carry more current in high, applied magnetic fields. This is accomplished by incorporating controlled nanostructures of a new phase within the superconducting wire.

The project was funded by DOE's Office of Electricity Delivery and Energy Reliability.

ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.