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US ALPS Program: Near and long term applications of liquid PFC’s

R&D issues for liquid PFC’s
•Erosion rates and influx rates for Lithium, Gallium, …

•Fluid body forces (JxB, dB/dt, pressure pulses)

- Deflection and interruption of flow patterns

-Ejection of droplets, jets, redeposition

•Removal rates, transport of H, H2, He, …

•Removal of Hydroxide/oxide layers

Potential advantages of flowing liquid PFC’s
•Continuously renewable surface:  No erosion lifetime limit, Rapid 
recovery from disruptions/ELMS

•Natural Tritium removal/recovery

•High heat flux handling, bulk flow heat transport ~50 MW/m2

•Low recycling boundary option  (near term applications)
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Hydrogen isotopes transport rapidly in liquid lithium compared to solid materials. 
Incident H,D,T ions react chemically and sequester as LiH,LiD,LiT.

x 3000
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Li sample holder

Deuterium plasma column LiI light emission

Lithium materials samples exposed 
to plasma flux in PISCES-B

Solid lithium material exposed to 
steady state deuterium plasma flux 
in PISCES-B. 

Ts < Tmp = 181C.

Liquid lithium at high surface 
temperature Ts > 450C undergoes 
evaporation and erosion. LiI line 
brightness (670.78 nm) >> D-alpha 
(656.1) brightness.

At intermediate temperatures 

181 < T < 350C erosion dominates.
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Release of hydrogen is recombination 
limited.  LiH + LiH = H2 + 2Li.

Hydrogen ion flux ~100% absorbed by liquid 
lithium up to the solubility limit (~1:1 H:Li 
ratio).  Incident flux converted to LiD/LiH.
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M. Baldwin, et al., J. Nuc. Mat.

PISCES-B experiments with hydrogen ion flux on liquid lithium show formation of 
LiH/LiD retention in solution.  Surface recombination rate is low hence implies low 
recycling rate for hydrogen.  PISCES B data
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Physical picture for hydrogen isotope retention and release.  Basis for 
UCSD PFC2D model for heat and particle removal by liquid lithium.

• Chemical reactions in 
the bulk and the surface.

• Molecular and atomic 
species transport 
modeled.

•Transport coefficients 
and rates are 
temperature dependent.

•Coupled thermal 
modeling is needed.

•PFC2D code developed 
at UCSD.

Hydrogen/helium retention and release
in liquid lithium

He+
HeImplantation 

and reacting  
layer

Convective transport
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PFC2D modeling code calculates thermal and LiD transport within flowing liquid 
metals. Solves coupled thermal and particle convective-diffusion equations.

Accurate theory for 
diffusion in liquid 
metals: 

Stokes-Einstein model.

molRT
kTD
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Temperature profiles in 2D

LiD density and 
Temp. profiles in 2D
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Present step: Laboratory experiment to demonstrate liquid lithium 
limiter.   UCSD/PPPL collaboration on CDX-U Torus at PPPL 

(Ro = 34 cm, a = 22 cm)

Exterior view Interior view
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Experimental challenge:  Can clean metallic lithium surfaces be made and 
sustained during tokamak operation?

UCSD phase-separator flow delivery system for CDX-U limiter                   

UCSD Liquid Lithium Phase-
separator Injectors

Lithium 
Reservoir

Heated 
Transfer Tube

Clean liquid lithium pool formed by 
phase-separator Injector in test 

stand at UCSD.
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Formation of liquid lithium pool limiter

Torodial Limiter Tray Segment

Lithium Injector Tube

Lithium 
pool 
wetting
surface of 
tray
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Experiments with toroidal liquid lithium limiter started in CDX-U 
May 2003

Lithium temperature controlled in CDX-U by heater system.  

Surface impurity control and overall cleanliness of lithium surface were 
achieved. 
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A pre-lithium plasma on CDX-U
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Particle input (from D2  puffing).

Prefill only here.

Discharge particle inventory

•Plasma current requires 2V or more for sustainment. Terminates when VL⇒0
• H2 gas puff prefill fuels the entire discharge. 

Plasma current (kA)

Loop voltage (V)

Time (sec)
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CDX-U plasma discharge with full liquid lithium limiter
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•Plasma current requires only ~0.5V for sustainment. Does not terminate until VL⇒-2V
•Density begins to pump out within ~1msec of cessation of puffing.

Particle inventory

Wow!

Density
10E12 cm-3
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Liquid lithium PFC is mechanically stable in CDX-U

• No motion of the liquid has been observed with a fast framing 
camera

• No spatter, droplets, etc on the vessel floor
• Current to the liquid during a discharge is routinely ~100A to 500A 

or greater, during plasma termination

Plasma termination event
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Summary and plans for LLPFC Limiter Experiments

• New liquid lithium filling technique developed at UCSD, successful 
at CDX-U.  Thin hydroxide coatings appear after plasma operations, 
but can be removed in-situ.  NO mobilization of lithium observed.

• Diagnostic improvements planned:  Dα view, Thomson scatting Te 
profiles, time resolved fast framing camera imaging are planned.

• Success in reducing hydrogen recycling implies need for central 
fueling: pellet fuelling, hypersonic gas jet, planned for CDX-U.

• CDX-U results sufficiently interesting to motivate plans for 
experiments on the NSTX torus at PPPL. 

• Invited paper, Special Liquid Metal Divertor/Limiter session  
(APS/DPP Meeting  October 2003)
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Some observations on differences between liquid lithium 
limiter/divertor  and other methods of recycling control.

• Liquid lithium PFCs control recycling by retaining incident hydrogen 
ion flux (and monatomic H). 

• LLPFC’s retain hydrogen in an extended thick layer or a volume of 
liquid LiH solution. Little H2 released.

• LLPFCs differ from recycling control by cryo-pumping which pumps 
neutral hydrogen species, namely H2 molecules.

• LLPFC’s differ from metallic coating/boronization which retain 
hydrogen in the surface and near surface layers. Passivation limits 
duration of recycling control.

Workshop Agenda
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