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OutlineOutline

Field Reversed Configuration (FRC)
- an attractive approach to confined fusion
Current drive and steady-state 
maintenance using Rotating Magnetic 
Fields (RMF)
Flow requirements for sustained operation
Fuelling and impurity ingestion
New design of TCS/mod
Summary and conclusions
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FRC Potential AdvantagesFRC Potential Advantages

Blanket RMF Antenna Leads

Confinement CoilsFirst Wall
13.5 m

FRC is a compact toroid with no or little toroidal field, extremely 
high beta, simple linear geometry, and natural divertor.
It is a very attractive candidate for a economic fusion reactor
– Small reactor core, low B
– Simple ash removal
– Cost effective development path.

NBI
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Two Major ApproachesTwo Major Approaches
Pulsed - High Density
– Most historical research – theta pinch formation yields high temperatures and

densities, with empirical scaling: τ ∝ rs
2√n

– Range of reactor scenarios
Adiabatic compressor – moving rings (oldest reactor design approach)
RACE type accelerator – use TRAP type moving wave FRC acceleration
Liner compression – Magnetized Target Fusion (MTF), LANL

Steady State - ~1020 m-3 Density
– Formation technologies: translation, merging spheromaks, ion beams, RMF
– Current drive and flux sustainment

Neutral beam driven – first design: ARTEMES D-3He reactor
Rotating Magnetic Field (RMF) driven – adapted from rotamak research

– FIX program: utilizing NB, but mostly axial injection due to low flux
– TCS program: using RMF to form, build up flux, and sustain current

Ultimate program: combine RMF to form and drive edge to enhance 
particle confinement, NB to drive center.  Torques balanced.
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TCS FacilityTCS Facility

RMF Antenna

40 cm 27 cm 80 cm

3.0 m2.5 m 1.5 m

ConfinementFormation Acceleration

Study physics of RMF driven FRCs
Flux sustainment of hot FRCs in steady state by the RMF



6US-Japan Workshop, Port Townsend, July 28–31, 2003

RMF Current DriveRMF Current Drive

‘Drag’ Electrons Along With  Rotating Radial Field
– Must have ωci < ω << ωce for electrons, but not ions, to follow rotation

Electrons Magnetized on Rotating Field Lines (ωceτ >> 1)
– Necessary for efficient current drive
– Absolutely necessary for rotating field penetration

RMF antenna
Iz = Iosinωt

RMF antenna
Iz = Iocosωt

Bz field coils

driven electron current rotating transverse field Bω
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Standard Model Standard Model 
of RMF Current Drive in FRCsof RMF Current Drive in FRCs

Poloidal flux will increase as long as the RMF torque on the 
electrons exceeds the torque due to electron-ion drag (resistivity)
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RMF penetrates just far enough, ∆r ~ (Be/µo)/neeω rs to 
maintain the diamagnetic current throughout the FRC
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Under Antenna
Outer:
Inner:
FRC Ends
Outer:
Inner:

Plasma flow in RMF driven FRCs

RMF2003.15

Vz
Vr

RMF Antenna
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Basic RMF Scaling Basic RMF Scaling 

ne given by RMF parameter

Total temperature set by power balance

⇒

Where ζ=<ωe> /ω so that there is maximum possible 
value when all electrons rotating synchronously.
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- RMF penetration automatically adjusts to provide Be

- Limited by maximum possible 
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Density Set by RMF ParametersDensity Set by RMF Parameters
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Internal Field Profiles Internal Field Profiles 

# 7889

RMF just reaches 
field null.

Full field reversal is 
maintained on inner field 
lines, presumably, by the 
inward flow.

Separatrix pressure is 
very low, in contrast to 
non-sustained FRCs
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SteadySteady--State Current Drive by RMFState Current Drive by RMF

Up to 60 kA of 
current is driven by 
RMF, maintained in 
steady state for the 
entire duration of 
RMF.

Operating space:
Ttot: 20 ~ 120 eV
ne: 0.5 ~ 3.5 

× 1019 m-3

Be: 4 ~ 20 mT
Bω: 1 ~ 7 mT
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Evidence of Axial OutflowEvidence of Axial Outflow
FRCs can be sustained with
axial lengths well beyond the 
RMF antenna (ls ~ 2la) ,
presumably by induced axial 
outflow, as can be seen by 
Ohm’s law:

rzBjE v−= ⊥ θθ η
In steady-state, Eθ ≡ 0

⊥= ηθ rezBj v⇒
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Operation with long antenna 
(ls < la) leads to non steady 
behavior with decreasing ls
most likely due to inhibition 
of swirling flow around ends, 
thus, degrading particle 
confinement time.
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RMF Heating and Power LossesRMF Heating and Power Losses

Losses are dominated by radiation in the presently unbaked, non-
wall conditioned TCS with quartz wall except initial start-up phase.
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Impurity RadiationImpurity Radiation
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Prad is best correlated with OIII; no obvious correlation with CIII.
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Impurity SourcesImpurity Sources
TCS Confinement Chamber

Carbon concentration only ~ 0.5% based on CD4 doping results. 
Dominant impurity appears to be oxygen, which may come from end 
metal cones, especially if the axial flow out the FRC ends is strong.
Silicon is originated from direct interaction of the plasma with the
quartz walls. Inward flow induced by the RMF would further reduce 
the screening efficiency for the wall source. 
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Illustration of Temperature Illustration of Temperature 
Independence on RMF ParametersIndependence on RMF Parameters
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Operational SpaceOperational Space
Prad/PRMF
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Modifications Underway on TCS to Modifications Underway on TCS to 
Reduce Impurity Influx
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Reduce Impurity Influx

Larger, metal input section to avoid translated FRC contact with 
quartz.
Protective tantalum covered flux rings under quartz RMF drive 
section.
Elimination of “O-rings” to allow bakeout & discharge cleaning.
Combination of Ti-gettering and boronization wall conditioning.
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SummarySummary

FRCs have been formed and sustained in steady-state by the 
Rotating Magnetic Fields (RMF) in TCS. 

RMF just penetrates to the field null, yet full field reversal is 
achieved at the inner field lines. RMF drive force present in the 
edge must be strong enough to drive an inward flow to sustain 
the current on the inner field lines. 

FRCs can be sustained with axial lengths well beyond the RMF 
antenna, presumably due to induced axial outflow.

TCS formed FRCs presently have temperatures limited by 
impurity radiation. Changes are being made to the present ‘O-
ring’ sealed quartz chambered TCS to provide bakable metal 
walls and active wall conditioning (Ti gettering and boronization)
to increase the temperature and further improve FRC 
performance. 

Workshop Agenda
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