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1. Introduction

The first two papers in this series1,2 have described Sensitivity and Uncertainty (S/U) Theory for

application to criticality safety validation exercises.  Those papers describe the use of S/U methods to

select and define benchmarks that are applicable to a particular application area.  Each of these methods

define parameters that are useful in traditional trending analyses that establish predicted

computation/nuclear data biases as well as upper subcritical limits.  This paper will describe a generalized

linear least squares methodology (GLLSM) that can also be used to establish computational/nuclear data

biases.  Subsequently, each of these methods will be used in an illustrative application with the results of

these new techniques compared with those of typical criticality safety trending analyses. 

The GLLSM procedure is an alternative approach to the traditional trending analysis for the

determination of biases.  The inputs needed for such an analysis are almost identical to those in the S/U

methods presented thus far: the sensitivity coefficients, the cross-section uncertainties, and the actual

calculated and measured keff values, with the addition of an estimate of the uncertainty in the measured keff

values.  The “data changes” that result from the application of the GLLSM can then be used to predict (via

interpolation or extrapolation) the biases for any application determined to be similar to the benchmark

area of applicability. 

                                                
*Managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the
U.S. Department of Energy.
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One of the benefits of the GLLSM approach is that, not only can the bias for a given application

be estimated, the cumulative “combination” of critical benchmarks can be used to determine the

convergence of the procedure.  Questions that can be addressed include: how many experiments are

needed to verify an application, and how much correlation to the application is necessary in order to

validate the application area?

Previously,3 the GLLSM was used to predict how many experiments and how much correlation

between experiments is necessary to validate an application area.  In this paper, the GLLSM is applied as a

data validation tool for comparison with the traditional trending analyses and trending versus E and ck
1

parameters.

This paper presents an illustrative application of both the S/U and GLLSM methods to the

validation of criticality safety studies for facilities processing uranium fuels with enrichments greater than

5 wt % for use in commercial power reactors.  In the past, these processing facilities have been limited to

enrichments at or below 5 wt %.  Hence, much of the critical experiment data correspond to these lower

enrichments.

As with any criticality data validation, the goal is to estimate the bias trends for ranges over which

the criticality safety calculational studies are to be performed.  The usefulness of S/U and GLLSM methods

in validation studies was demonstrated by performing a validation of a hypothetical set of application

scenarios, which consist of 14 systems, each having U(11)O2 fuel with H/X values varying from 0 to 1000.

 The 11 wt % enrichment was chosen so the entire range of moderation conditions, including dry, could be

studied.  The data validation included traditional trending analyses, trending analyses with the E and ck

parameters, and finally the full GLLSM approach.  Advantages and disadvantages of each approach are

explored, and guidance for general use of these techniques is developed.
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2.  GLLSM Theory

The procedures utilized in this work are based on the generalized linear-least-squares method

described in Ref. 4.  The GLLSM has been referred to as a data adjustment procedure, a data consistency

analysis, and even a data evaluation technique.  The most appropriate description of GLLSM for this

particular application would be that of a generalized trending analysis tool.  Physically the GLLSM is

designed to force agreement between the measured and calculated values of keff for the entire set of criticals

used in the data validation process.  The resulting “data changes” that result from the application of the

GLLSM can then be used to predict (via interpolation or extrapolation) the biases for any application

determined to be similar to the benchmark area of applicability.  Functionally, the GLLSM can be thought

of as a trending of a suite of critical benchmarks with respect to the cross-section correlation coefficient

between the various systems.  The GLLSM has the capability to identify experiments that contain

inconsistencies (i.e., the magnitude of the measured-to-calculated keff difference is larger than their

combined uncertainties).  A chi-squared consistency indicator is used to directly predict the overall

consistency of the suite of benchmarks.  A chi-squared value for each experiment is also available from the

GLLSM method. 

The derivation of the GLLSM equations in this work follows the general notation from Ref. 3. 

The vector m L (mi), i = 1, 2, ... I, represents a series of keff measurements on critical benchmark

experiments that are to be used in the validation of a dataset for criticality safety computations.  This vector

m has a corresponding symmetric I × I uncertainty matrix associated with it, which is denoted as Cmm L

cov(mi,mj) L <GmiGmj>.  Further, the vector k L (ki) is denoted as the corresponding series of calculated

values of keff for each of these experiments.  The vector ? L (?n), n = 1, 2, ... N, with its corresponding

symmetric N × N uncertainty matrix C?? L cov(?n?m) L <G?nG?m>, represents the differential data used in

the calculations (i.e., nuclear data such as fission, capture, and scattering cross sections, the fission
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spectrum and neutrons-per-fission quantities) and, additionally, the material densities used in the problem

description.  This procedure also allows for the possibility of correlations between the integral and

differential quantities, which may be present at times in the analysis.  These correlations are denoted by the

N × I covariance matrix C?m
 
L <G?nGmi>.

The sensitivities of the calculated keff to the ? parameters are given as Sk L jki/j?n, with Sk being an

I × N matrix.  Representing perturbation of the ? parameters as linear changes in the calculated keff value,

yields the following:

with the corresponding uncertainty matrix of the calculated values of

If the deviations of the measured responses from their corresponding calculated values is denoted

by the vector d L (di) = k(?) - m, then the uncertainty matrix for the deviation vector d, denoted by Cdd, is

Denoting x = ?k - ?, and y = mk- m = k(?k) - m, we can rewrite Eq. (10) as

The measured keff values, mi, and the measured (or evaluated from measurements) parameter

values, ?n, both have their corresponding uncertainties.  The best evaluated parameters ?nk and the best

evaluated keff values mik will be those values that are consistent with each other, namely mik = ki(?kn), and

are consistent with their estimated values and uncertainties (i.e., they do not deviate too much from their

current best estimates mi and ?n, respectively).

k(?k) � k(? � G?) � k(?) � Gk ³ k(?) � SkG? ,  (1)

Ckk L <GkjGkj > � Sk<G?nG?m> Sk � Sk C
??

S H
k . (2)

Cdd � Ckk � Cmm > SkC
?m > Cm?S H

k ,
� SkC

??
S H

k � Cmm > SkC
?m > Cm?

S H
k .

(3)

y � d � Sk x . (4)
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The GLLSM procedure involves minimizing the quadratic loss function

where (y,x)† L (y1, y2, ..., yI, x1, x2, ..., xN), subject to the constraint expressed by Eq. (4).  Adopting the

procedure of Ref. 3, the above conditional minimum formulation is equivalent to unconditionally

minimizing the function R(x,y), where

and 2U is an I-dimensional vector of Lagrange multipliers.  Thus x and y satisfy the equations

Solving the resulting equations for x and y, we obtain

where Cdd
-1 is obtained by taking the inverse of Eq. (3) as a matrix of dimension I × I.

A few observations are due here:

1. If the ?k values obtained in Eq. (8) are substituted in k(?k), using the linearity assumption of

Eq. (1), the mk value of Eq. (8) is obtained, thus mk = k(?k) is satisfied.

2. Moreover, not only are the new/best estimates of the cross sections and of the keff values consistent,

but their uncertainties are reduced as well.

These reduced uncertainties are given by

where

Q(x,y) � (y,x)H
CmmCm?

C
?mC

??

�1

(y, x) , (5)

R(x,y) � Q(x,y) � 2UH(Skx > y) , (6)

jR(x,y)/jx � jR(x,y)/jy � 0 . (7)

?k � ? � (C
?m > C

??
S H

k )C �1
dd d, and

mk � m � (Cmm > Cm?
S H

k ) C �1
dd d,

(8)

Cmkmk
� Cmm > Cyy and C

?k?k
� C

??
>Cxx , (9)

Cyy � (Cmm > Cm?
S H

k )C >1
dd (Cmm > SkC

?m)

Cxx � (C
?m > C

??
S H

k )C >1
dd (Cm?

> SkC
??

) .
(10)  

Cyy � (Cmm > Cm?
S H

k )C >1
dd (Cmm > SkC

?m)

Cxx � (C
?m > C

??
S H

k )C >1
dd (Cm?

> SkC
??

) .
(10)  
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This could of course suggest that any criticality application that is similar to the selected

benchmarks should be calculated using the modified cross sections and thus have a reduced uncertainty. 

However, even when maintaining “conventional” criticality estimates using “established” cross sections

and trend curves, the GLLSM approach can be beneficial, as will be demonstrated in the next section.

In summary, the GLLSM procedure as applied to the validation of cross-section libraries for

criticality safety applications is designed to predict the data changes, x, such that the differences between

measured and calculated keff values (i.e., the quantity, y) are minimized.  These keff differences are the

trends observed in the traditional criticality safety trending analyses.  Removal of these trends and the

identification of the data responsible for them are keys to the application of GLLSM techniques to

criticality safety data validation.

2.1 Application of GLLSM to Data Validation

The solution of Eq. (8) allows evaluation of the x and y quantities in Eq. (4).  Of particular interest

is the quantity d, which has been defined as (k - m).  This quantity is the calculated-versus-measured

discrepancy in keff as determined from the as-specified experimental benchmark description and given cross

sections.  Rarely do the actual criticality safety scenarios match exactly with one of the experimental

benchmarks.  Thus, the actual quantity of interest is an estimate of the quantity d for the criticality safety

scenario of interest, denoted the “application.”  In general, the application is an interpolation of the

available critical benchmarks, in that it is in the same range or area of applicability with endpoints of the

range clearly defined.  Occasionally, the application is near the area of applicability, but somewhat outside

the endpoints of that area.  This situation requires an extrapolation of the available validation data.  Both

the interpolation and extrapolation situations technically require a so-called translation of the available

data, which is traditionally accomplished by trending curves.  This translation is accomplished visually by

observing significant trends versus trending parameters hydrogen-to-fissile ratio (H/X), energy of average
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lethargy causing fission (EALF), enrichment, etc.; coverage is assessed by observing the density of data

points near the application data point.

The systematic application of GLLSM to the interpolation and extrapolation problems described

above amounts to a formal procedure for evaluation of the quantity d for the applications of interest.  Since

the application is assumed to be similar but not exactly like one of the experimental benchmarks, the key to

the procedure is that we can rewrite Eq. (4) for the application as:

where Sa are the calculated sensitivities for the application.  The GLLSM theory predicts that if a sufficient

number of experiments are similar to the application of interest, the calculated value of keff, using the “best”

cross sections, ?k, will indeed approach the value mak and thus, Eq. (11) yields the predicted value of the

application bias da = ka(?) - mak, which is obtained when using the given cross sections ? as

where ?k - ? was obtained in Eq. (8) using all similar benchmark criticality measurements.

The definitions of “similar” and “sufficient” number of experiments are determined by tests using

actual benchmark experiments.

3. S/U and GLLSM ANALYSIS EXAMPLES

The GLLSM methodology as described above is very different from the traditional criticality

safety approaches.  As an aid to the understanding of this new procedure, this section proceeds through a

criticality validation exercise using standard techniques, S/U techniques, and GLLSM techniques as

demonstration exercises. 

ka (?k) > mak � [ka(?) > mak] � Sa (?k > ?) , (11)

da ³ >Sa(?k > ?) , (12)
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3.1 Description of U(11)O2 Systems

The illustrative application for validation is a series of U(11)O2 systems with H/X values of 0, 3, 5,

10, 20, 40, 80, 200, 300, 400, 500, 600, 800, and 1000.  These U(11)O2 systems are “artificial” critical

bare spheres generated for calculational comparison purposes.  The object of this demonstration problem is

the validation of the underlying cross sections and criticality code for these 14 systems.

The dimensions for the U(11)O2 systems were generated via a critical radius search calculation. 

The critical radii corresponding to the 14 unreflected  systems for H/X of 0 to 1000 were 50.55, 40.00,

36.85, 31.77, 26.48, 22.34, 19.87, 18.99, 19.53, 20.39, 21.42, 22.51, 25.41, and 29.17 cm. 

3.1.1 Traditional Trending Analysis

In order to clearly show the relationship between the GLLSM techniques and the more traditional

techniques for criticality safety validations, a traditional trending analysis using the 102 benchmark

experiments described in Ref. 4 is presented.  In Figure 1, keff is trended versus the energy of average

lethargy causing fission (EALF).  The prediction from this analysis would be a nearly constant positive

bias of about 0.3%.  Similar results were obtained when trended versus H/X (see Ref. 4 for details). 
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 3.1.2 Trending Analysis Using ck and E Values

In this section, trending analyses using the same set of 102 benchmarks as the traditional analyses

shown above are discussed; however, the trending parameters are now the E and ck coefficients, described

in Refs. 1 and 2. Even though it is possible to perform the trending on each of the E coefficients

independently, it was decided to trend keff versus the sum of these coefficients (i.e., Esum = Ec + Ef + Es). 

This combination reduces the number of trend plots to be examined. 

The trend plot of keff versus Esum is given in Figure 2 for the U(11)O2 H/X=3 system.*  These plots

are analyzed with a different method from the traditional approach.  Here the trend curves are interpreted

as an extrapolation to E and ck values of unity, which correspond to the particular application system of

interest.  The slope of the trend curve is of secondary importance.  The items of primary importance are the

number of systems with E and ck values greater than 0.8 (see refs. 1 and 4) and the value of the predicted

Fk bias for E and ck values of unity. 

These trending analysis results are generated using the similar procedures to those used in the

traditional trending approach of Section 3.1.1.  Therefore, the same type of estimates for the Fk bias and its

uncertainty can be obtained from these analyses.  These bias predictions are given in Table 1.

3.1.3 GLLSM Analysis of 11 wt % Systems

The GLLSM technique is a procedure completely different from the preceding trending

techniques.  It does have the same intended endpoint:  the determination of the predicted Fk bias for the set

of U(11)O2 systems.  As was shown in Section 2 of this paper, the GLLSM procedure is capable of

                                                
*The U(11)O2 H/X = 0 system was analyzed, but the trend plot is not shown.  See Table 1 for a
summary of the complete results.
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indicating not only the predicted Fk bias, but its uncertainty as well.  The result of the application of

GLLSM to this set of problems is also shown in Table 1.

Table 1  Comparison of predicted Fk bias and its standard deviation for various procedures

Procedure H/X = 0 H/X = 3 H/X = 40 H/X = 500

%  bias % std. dev. % bias % std. dev. % bias % std. dev. % bias  % std. dev.

EALF 0.17 0.70 0.26 0.70 0.26 0.70 0.26 0.70

H/X 0.32 0.71 0.32 0.71 0.31 0.71 0.17 0.71

Esum 0.65 0.71 0.99 0.69 0.25 0.72 0.15 0.71

ck 1.34 0.66 1.15 0.66 0.26 0.72 0.39 0.79

GLLSM 3.08 0.38 2.11 0.33 0.54 0.40 0.76 0.37

3.2 Summary of Trending Analyses

In the preceding sections, results from a number of approaches to criticality safety data validation

were presented.  Quite interestingly, they give very different answers for the set of application problems

chosen for study.  The primary reason for these differences seems to be the inclusion of systems that may

“look” very similar from the standpoint of certain parameters, but very different with respect to other

parameters.  In particular, according to both the H/X and EALF parameters, both the HEUMET4 and

ZPR/Big-104 problems are similar.  However, with respect to the sensitivities and uncertainties, they

appear to be quite different.  Cancellation of effects due to systems that “appear” to be similar causes the

traditional trending approaches to underpredict the actual bias for low-moderation systems with

intermediate enrichments.  This situation is evident in Table 1, where each of the previously reported

results is presented in summary form.  The predicted biases from these applications are all positive. 
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Therefore, their overprediction is not a concern for these applications.  However, a similar situation can be

easily postulated where a predicted positive bias is actually a negative bias. 
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Figure 1.  Trend plot of k-eff versus EALF
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Figure 2.  Trend plot of k-eff with E values
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