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I.  INTRODUCTION 
 

The NEWTRNX [1] transport module solves the 
multigroup, discrete-ordinates source-driven or 
k-eigenvalue transport equation in parallel on a 3-D un-
structured tetrahedral mesh using the extended step char-
acteristics (ESC) [2], also known as the slice-balance ap-
proach (SBA), spatial discretization.  The spatial domains 
are decomposed using METIS [3].  NEWTRNX is under 
development for nuclear reactor analysis on computer 
hardware ranging from clusters to massively parallel ma-
chines, like the Cray XT4.  Transport methods that rely on 
full sweeps across the spatial domain have been shown to 
display poor scaling for thousands of processors.  The 
Parallel Block-Jacobi (PBJ) algorithm allows each spatial 
partition to sweep over all discrete-ordinate directions and 
energies independently of all other domains, potentially 
allowing for much better scaling than possible with full 
sweeps [4].  The PBJ algorithm has been implemented in 
NEWTRNX using a Gauss-Seidel iteration in energy and 
an asynchronous communication by an energy group, 
such that each partition utilizes the latest boundary solu-
tion available for each group before solving the within-
group scattering in a given group.  For each energy group, 
the within-group scattering converges with a generalized 
minimum residual (GMRES) solver [5], preconditioned 
with beta transport synthetic acceleration (β-TSA) [6].   

 
Reactor analysis software has utilized nonlinear 

methods for acceleration of the transport equation for 
almost three decades.  Homogenization theory, using lat-
tice-physics transport and full-core diffusion, produce a 
low-order problem (in space, energy, and direction) with 
“discontinuity factors” that produce the exact transport 
solution if the boundary conditions for the lattices are 
exactly correct.  Coarse-mesh finite difference diffusion 
(CMFD) homogenizes the high-order solution over spatial 
domains and uses discontinuity factors to formulate a 
low-order eigen-problem that exactly replicates the high-
order solution, averaged over coarse-mesh regions, when 
converged. 

 
The generalized coarse-mesh rebalance (GCMR) 

methodology formulates a CMFD-like problem without 
the structured mesh that is traditionally used with CFMD 
and has been shown (in one dimension) to provide a more 
robust method than CMFD [7].   

 

The GCMR methodology has been implemented in 
NEWTRNX for solving the 3-D parallel transport equa-
tions on the nonconvex, unstructured METIS spatial do-
mains.   
 
I.A. Generalized Coarse-Mesh Rebalance  
 

For a given problem (in this case source-driven 
transport, but could also applied to an eigen-problem as 
well): 
 
 A bψ =  (1) 
 
With a given iteration procedure of 
 
 ( ) [ ] ( )1l lI MA Mbψ ψ+ = − +  (2) 

 
Where ψ  is the high-order solution (volumetric and sur-
face of each spatial domain), A is the high-order matrix, 
and M is a preconditioner (e.g., PBJ source iteration).  A 
low-order (coarse-mesh) region of phase space (space and 
neutron direction) is defined and homogenization is used 
as the restriction operation (R) over each region.  Simi-
larly, the surface solution is reduced to the neutron current 
and flux on the interface of partitions: 
 
 ( ) ( )l lRψΦ =  (3) 
 
Where R is the homogenization operator.  Given R, a pro-
longation operator (P) is defined to preserve the high-
order solution after a restriction and prolongation opera-
tion: 
 
 ( ) ( ) ( )l l lP P Rψ ψ⎡ ⎤= Φ = ⎣ ⎦ . (4) 

 
R and P are used to define a low-order problem such that, 
when converged, is equal to the integral of the fine-mesh 
solution over coarse-mesh regions: 
 
 ( ) ( ) ( ) ( ). .l l l lP s t P Rψ ψ= . (5) 

 ( )l
LOA RAP=  (6) 

 
Given the low order problem, we solve for ( )1

2l+
Φ : 
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 ( )1
2l

LOA Rb+
Φ =  (7) 

 
Then calculate the high-order solution: 
 
 ( ) ( ) ( )1 1

2 2l llPψ
+ +

= Φ  (8) 

 ( ) [ ] ( )11 2ll I MA Mbψ ψ
++ = − +  (9) 

 
I.B. Surface Prolongation on a METIS Domain  
 

The prolongation operator for the volumetric solution 
is straightforward—the ratio of the fine-mesh flux mo-
ments to the scalar flux integrated over the coarse-mesh.  
In three dimensions, the angular flux for every face on the 
interface of partitions is reduced to the scalar flux and net 
current (and algebraically eliminated).  However, the pro-
longation operator is defined for the half-range (incident 
and outgoing) solution to preserve the net current and flux 
from the low-order problem.   
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The low-order, half-range surface solution can be defined 
using the initial half-range current to flux ratio 
( ),out incμ μ :  
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II.  RESULTS 
 

A partial height 3-D LMFBR fuel pincell was ana-
lyzed to demonstrate the performance of the GCMR 
nonlinear acceleration of the PBJ algorithm in space (with 
Gauss-Seidel in energy).  This single assembly (shown in 
Figure 1) contains 6984 tetrahedral elements (~3.5 slices 
per element).  The SCALE computer code was used to 
generate a 44-group cross section library, and a product 
quadrature set with 16 polar and 36 azimuthal angles was 
used— a total of 500 million degrees of freedom.  Figure 
2 displays the convergence of the PBJ algorithm with and 
without GCMR by iteration for 4 and 16 spatial domains.   

 

 
Fig. 1.  Axial slice of an LMFBR pincell with mesh and 4 spatial partitions displayed.. 
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Fig. 2.  Convergence by outer iteration for PBJ alone SI and with GCMR using 4 and 16 processors. 
 
 

III.  CONCLUSIONS 
 
The PBJ algorithm has been shown to parallelize well for 
multigroup algorithms, but the rate of convergence is sub-
stantially improved with the nonlinear GCMR algorithm.  
The rate of convergence is not affected by the implemen-
tation of the GCMR nonlinear acceleration.  In addition, 
the computational burden of the GCMR solver is negligi-
ble with respect to the transport sweeping.  Additional 
problems will be analyzed and scaling studies for larger 
domains with many more processors will be considered in 
the near future. 
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