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INTRODUCTION 
 
NEWTRNX [1] is a 3-D deterministic transport 

solver under development to solve large problems using 
spatial partitioning with Parallel Block Jacobi iteration 
structure [2]; it employs the Slice-Balance Approach to 
sweep across a tetrahedral mesh on each partition 
independently.  The innermost iteration, operating on a 
single partition, solves a one-group transport equation that 
stores only the volumetric flux moments and the angular 
flux on boundary faces. 

When solved with source iteration (SI), this one-
group problem may converge arbitrarily slowly.  The 
Generalized Minimal RESidual method (GMRES) [3], a 
Krylov iterative solver, is used as an alternative to SI.  
The beta Transport Synthetic Acceleration (β-TSA) 
method [4] is implemented as a standard synthetic 
accelerator for SI and as a preconditioner for GMRES.  

Because the solution of a multigroup problem 
requires iteration over each energy group, the group with 
the highest self-scattering ratio will be a limiting factor.  
Using this group with a simple geometry provides a 
practical test of the acceleration implementation. 

The two 3-D geometries chosen to test the 
acceleration method are slices from standard nuclear 
reactor pin cells: one is a square-pitch pin from a 
pressurized water reactor (PWR), and the other is a 
triangular-pitch pin from a liquid metal fast breeder 
reactor (LMFBR).  Each problem uses fully reflecting 
boundaries and is executed on one processor. 
 
ANALYSIS 

 
Solution of the Transport Equation 
 

The inner iteration of NEWTRNX solves the one-
group transport equation (Eq. 1). 
 W I − EV( )x = WEq (1) 
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Here E is the transport operator, which transforms the 
angular moments of the source to an ordinate-based 
source, and performs a transport sweep over all ordinates 
(given an incident boundary source) to calculate new 
moments of the volumetric flux and boundary angular 
flux. V is the scattering/reflecting operator, x is the 

solution vector comprised of the volume and exiting 
boundary fluxes, and qm contains the volumetric source 
moments (Eq. 2).  Synthetic acceleration acts as a left 
preconditioner W which can be directly applied to the 
result of an SI iteration, or used on a swept search vector 
in GMRES. 

The synthetic method implemented in NEWTRNX is 
modified to operate on the residual of a source iteration 
and update the old scalar flux and boundary angular flux 
with a correction e (Eq. 3).  This reformulation removes 
the extra source iteration that is present in the traditional 
method, allowing a description as a preconditioner to be 
more simply stated and applied to GMRES. 

 
x( l+1/ 2) = EVx( l ) + Eq 
e = W x( l+1/ 2) − x( l )( ) 

x( l+1) = x( l ) + e  

(3) 

 
Transport Synthetic Acceleration 
 

The β-TSA method approximates a correction to the 
problem with a low-order quadrature set and uses a 
parameter β that modifies the scattering ratio.  Other 
parameters affect the performance of the TSA scheme, 
including the number of iterations to run and an execution 
criterion. 

Formulated as the preconditioner W, TSA acts as an 
approximation of the inverse of a scatter-sweep operation 
(Eq. 4).  Eβ,lo and Vβ,lo are the low-order operators that 
modify the scattering ratio (Eq. 5), and P and R are the 
angular prolongation and restriction operators that operate 
on the boundary angular flux. 
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To solve the preconditioned vector z, it is desirable 
not to prolongate and restrict inside every inner iteration,. 
Therefore, an alternate solution method is used (Eq. 6-8). 

 ˜ y = Ry,  ˜ z ( 0) = 0  (6) 

 ˜ z ( m+1) = Eβ ,loVβ ,lo˜ z ( m) + ˜ y  (7) 

 z = P ˜ z ( converged ) − ˜ y ( )+ y  (8) 

The use of GMRES to solve the inner iteration (Eq. 
1) imposes limits on the use of the β-TSA preconditioner.  
If the TSA iteration (Eq.7) is also solved with GMRES, it 



must be converged to a tighter tolerance than that of the 
inner iterations in order to function correctly [5].  If the 
β-TSA preconditioner uses SI, it must be iterated a set 
number of times in order to be a linear operator. 

The use of a low-order quadrature set with boundary 
conditions requires angular restriction and prolongation 
operators [6].  For the product quadrature set, which is 
used in problems with mirror boundaries in a hexagonal 
geometry, each octant is collapsed into three ordinates.  
The level-symmetric quadrature set uses S2 as its low-
order quadrature set. 

One definition of the angular restriction R may 
preserve the zeroth angular moment, the scalar flux 
(Eq. 9).  An alternate definition preserves the first angular 
moment; that is, the partial current with respect to the 
outward normal of each boundary face (Eq. 10).  Note 
that this definition requires that no surface normal can be 
parallel to any low-order ordinate direction.  In Eqs. 9 and 
10, m is each high-order ordinate, inside each section s, 
which is collapsed to ordinate n for each boundary face i. 
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The prolongation operator P similarly preserves the 
zeroth or first moment by giving each high-order ordinate 
an equal share of the scalar flux or partial current. 
 
Test Problems 
 

Two simplified problems were chosen to test the 
implementation of β-TSA.  A product quadrature set with 
a multiple of three azimuthal directions is chosen with an 
LMFBR pin’s hexagonal geometry, and a level-
symmetric quadrature set is used with a PWR pin’s square 
geometry.  The LMFBR and PWR meshes contain 1583 
and 1420 tetrahedra, respectively (Fig. 1).  SCALE 5.1 [7] 
is used to generate 44-group cross sections, and the group 
with the highest self-scattering ratio is extracted to 
provide the basis for the one-group test problem (Table I). 

A Perl script is used to run NEWTRNX and process 
the many permutations of parameters needed to optimize 
and generate data for the test problems. 

 
RESULTS 

 
The choice of prolongation and restriction method 

had little effect on the solution or convergence rate.  
Because the literature [6] suggests that conserving partial 
currents is the more correct method, that option was 
chosen for all further tests. 

Testing of the scattering parameter β on a variety of 
cases showed little effect on the overall computational 

time.  The typical value of 0.3 was used. 
The number of inner iterations was varied from 5 to 

50 on the PWR problem using the S12 quadrature set.  It 
had little effect when GMRES was used to solve the inner 
iterations, since GMRES converged very quickly.  When 
using source iterations, however, 20 was close to the 

 

  
Fig. 1. LMFBR (top) and PWR (bottom) test geometries.  The 
red region is fuel; the green, cladding; and the blue, coolant.  
Each problem geometry is 1.0 cm tall with fully reflecting 
boundary conditions. 

TABLE I. Cross sections used in the PWR and LMFBR test 
problems (cm-1). 

Problem Material Σt Σs νΣf 
Fuel 5.64E-01 4.56E-01 1.31E-01

Cladding 5.98E-01 5.93E-01 0.00E+00LMFBR 
Coolant 7.12E-02 3.35E-04 0.00E+00

Fuel 4.36E-01 4.15E-01 2.00E-03
Cladding 3.82E-01 3.78E-01 0.00E+00PWR 
Coolant 5.35E-01 2.91E-01 0.00E+00



optimal value. 
These optimized parameters were used in the 

execution of the problem set (Table II).  TSA accelerated 
the higher-order sets modestly when SI was used to solve 
the outer iterations.  However, in all other cases, TSA 
caused the solution time to increase relative to the 
unaccelerated method. 

 
CONCLUSIONS AND FUTURE WORK 
 

The overhead required to use TSA makes the 
acceleration method inefficient for quadrature sets smaller 
than S8 when SI is used to solve the outer iterations. It is 
expected that similar inefficiency may occur with a 
product quadrature set with a small number of high-order 
ordinates.  However, the use of TSA with GMRES 
solving the outer iterations requires more computational 
time.  In fact, using GMRES alone to solve the problem is 
more computationally efficient than any application of 
TSA. 

Overall, the TSA implementation when applied to the 
test problems performs poorly.  This is likely caused by 
the opposing reflecting boundaries on a highly scattering, 
optically thin medium.  In order to more accurately 
simulate a single partition, the test problem should be 
reformulated to be a section of a fuel assembly with 
vacuum boundaries. 
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TABLE II. Computational time (in seconds) required for solution of test problems.  The product quadrature set for the 
LMFBR is written as (number of azimuthal directions)x(number of polar directions).  Bold entries indicate an 
improvement relative to the unaccelerated method. 

LMFBR PWR Outer 
Method 

Inner 
Method 6x3 6x6 12x3 12x6 18x3 18x6 S4 S8 S12 S16 

SI ---- 426.81 849.88 881.09 1740.53 1313.07 2663.83 5.28 17.59 36.71 62.58 
SI SI 678.63 959.29 1020.13 2048.84 1356.25 2346.6 11.54 15.45 30.08 50.33 
SI GMRES 595.99 913.69 943.32 1791.38 1564.13 2483.7 9.1 19.24 27.02 48.38 

GMRES ---- 37.19 53.12 47.78 109.9 78.75 172.9 2.04 8.2 18.33 31.38 
GMRES SI 73.37 149.73 140.64 242.54 221.75 311.76 15.47 21.17 33.79 50.31 
GMRES GMRES 49.08 102.23 97.55 196.27 166.69 257.91 7.72 15.14 24.09 40.9 


