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ABSTRACT 

 
Computational capability has been developed to calculate sensitivity coefficients of generalized 

responses with respect to cross-section data in the SCALE code system. The focus of this paper is 

the implementation of generalized perturbation theory (GPT) for one-dimensional and two-

dimensional deterministic neutron transport calculations. GPT is briefly summarized for 

computing sensitivity coefficients for reaction rate ratio responses within the existing framework 

of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT 

provides the capability to analyze generalized responses related to reactor analysis, such as 

homogenized cross-sections, relative powers, and conversion ratios, as well as measured 

experimental parameters such as 
28

ρ (epithermal/thermal 
238

U capture rates) in thermal 

benchmarks and fission ratios such as 
239

Pu(n,f)/
235

U(n,f) in fast benchmarks. The S/U analysis of 

these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis 

capabilities for system similarity assessment and data adjustment. S/U analysis is provided for 

boiling water reactor pin cell as part of the Organization for Economic Cooperation and 

Development Uncertainty Analysis in Modeling benchmark.  

 

Key Words: SCALE, GPT, sensitivity, uncertainty, lattice physics 

 

 

1. INTRODUCTION 

 

The SCALE code system [1] includes a sensitivity and uncertainty (S/U) analysis code package 

called TSUNAMI. TSUNAMI originally focused on keff responses for criticality safety analysis 

and included the capability to compute sensitivity coefficients using forward and adjoint 

solutions from three-dimensional Monte Carlo or one-dimensional (1D) discrete ordinates 

eigenvalue calculations.
 
TSUNAMI also computes the implicit sensitivity effect, inherent in 

resonance self-shielding calculations, though the use of automatic differentiation. With the 

release of version 6 of SCALE, the TSUNAMI capability has been extended to include S/U 

analysis for eigenvalue-difference responses, or reactivity responses, coupled neutron-gamma 

responses for shielding applications, as well as a cross-section data adjustment tool for criticality 

safety validation. In this paper we discuss a further extension of the TSUNAMI code package to 

incorporate generalized perturbation theory (GPT) for 1D and two-dimensional (2D) 

deterministic transport calculations. The SCALE 1D and 2D transport codes—XSDRNPM and 

NEWT, respectively—have been modified to solve the generalized adjoint equation, an 

inhomogeneous form of the transport equation containing the singular Boltzmann operator for a 

critical system. Generalized adjoint solutions from the SCALE transport codes are used to 

compute sensitivity coefficients based on GPT expressions, which consist of direct effects (from 

data appearing directly in response functions) and indirect effects (from data impacting the 
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response through flux perturbations). Both direct and indirect effects may include explicit and 

implicit components. The explicit components describe response changes due to perturbations in 

multigroup cross-section data appearing in the transport equation, while the implicit components 

account for response changes caused by perturbations in cross-section self-shielding.  

 

In the following section, the sensitivity coefficient calculations for both keff and generalized 

responses are summarized. S/U analysis of a boiling water reactor (BWR) pin cell is provided in 

Section 3 as part of the Organization for Economic Cooperation and Development (OECD) 

Uncertainty Analysis in Modeling (UAM) benchmark [2], followed by the conclusions in Section 

4. 

 

 

2. THEORY 

 

2.1. Explicit Sensitivity Coefficients 

 

GPT was probably initially studied by Russian scientists in the late 1950s. The first publications 

on the subject were by Usachev and Kadomtzev [3–4], while other seminal works are credited to 

Gandini, Lewins, Stacey, and Pomraning [5–8]. The expressions shown in the current paper 

follow the notation by Williams [9].  

 

The forward transport equation can be written in operator form as 

  

 ,L P    (1) 

 

where ϕ represents the neutron flux, L all of the transport operator except the fission term, λ the 

eigenvalue of the transport equation, and P the fission term of the transport operator. In this 

form, the forward transport equation is written as an eigenvalue problem in which the neutron 

flux is an eigenvector associated with the eigenvalue λ . The largest eigenvalue (equal to 1/keff) 

and its associated eigenvector is referred to as the forward fundamental mode solution.  

 

The adjoint transport equation can be derived by defining an inner product for the forward 

transport equation as the integration over all phase space (i.e., volume, energy, and direction). 

The adjoint equation can be written in operator form as 

 

 † † † † ,L P    (2) 

 

where ϕ
†
 represents the adjoint flux, and L

†
 and P

†
 are the adjoint operators to L and P. The 

eigenvalues for the adjoint equation are equal to the eigenvalues for the forward equation. The 

adjoint eigenvector associated with the largest eigenvalue is referred to as the adjoint 

fundamental mode solution.  

 

TSUNAMI uses the solutions to the forward and adjoint transport equations to calculate explicit 

eigenvalue sensitivity coefficients to multigroup cross-section data. The explicit sensitivity 

coefficients characterize the first-order accurate change in eigenvalue due to changes in the 
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multigroup cross-sections. The explicit eigenvalue sensitivity coefficient to a given multigroup 

cross-section α, Sλ, α,  is given as 

 

 

†

, †

, ( )
1 1

,

L P

S
P

 

    
  

    

 
  

   
  

 (3) 

 

or in terms of keff sensitivities as 

 

 , , ,

1
( ) .

effk eff

eff
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    






  


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The explicit sensitivity coefficient captures both the direct change in the eigenvalue due to the 

perturbations of the L and P operators and the indirect change due to neutron flux perturbations.  

 

Explicit sensitivity coefficients to system responses other than keff have expressions similar to Eq. 

(3) and have been derived in [9] using both standard adjoint and variation approaches. Defining a 

system response as a ratio of inner products of the forward neutron flux, that is,  
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2

,
,

,

H
R

H


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 (5) 

 

the explicit response sensitivity coefficient is given as 
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 (6) 

 

In this equation, the first two terms on the right-hand side represent the direct change in the 

system response due to the cross-section perturbation in the response function, and the final term 

represents the indirect change due to the perturbation of the neutron flux. In the indirect effect 

term, the adjoint fundamental mode has been replaced with the so-called generalized adjoint Γ
†
, 

which is the solution to the following adjoint equation: 

 

 
† † † † † .L P S     (7) 

 

The generalized adjoint equation contains a generalized source term on the right-hand side that is 

not present in the adjoint fundamental mode equation (Eq. [2]). The generalized adjoint source is 

computed as the functional derivative of the system response R with respect to the forward 

neutron flux, that is,  

 

 
† 1 2

1 2

1
.

, ,

H HR
S

R H H  


  

    
 (8) 
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In this expression, the functional derivative contains a 1/R normalization so that relative 

sensitivity coefficients can be easily computed (i.e., a relative change in the response due to a 

relative change in the cross-sections). 

 

Because of the presence of the fundamental mode eigenvalue in Eq. (7), the generalized adjoint 

equation represents a singular system of equations that contains an infinite number of solutions. 

The generalized adjoint can be expressed as a linear combination of the adjoint fundamental 

mode solution and a particular inhomogeneous adjoint solution with no fundamental mode. 

Therefore, the generalized adjoint can be written as 

 

 † † † ,p      (9) 

 

where γ is a scalar variable that represents an arbitrary amount of the adjoint fundamental mode 

solution. To determine a unique solution to Eq. (9), γ is usually chosen such that the generalized 

adjoint solution is orthogonal to the forward neutron fission source, that is,  

 

 

†

† †

†

,
, 0 .

,

p

p

P
P

P


   

 

 
      

 
 (10) 

 

This orthogonality condition can be derived by imposing the constraint that the response is 

stationary (i.e., insensitive) to perturbations in the eigenvalue when determining the first-order 

accurate changes in the system response. In both XSDRNPM and NEWT, the value of γ is 

determined by standard fundamental mode removal techniques discussed in [9]. 

 2.2. Implicit Sensitivity Coefficients 

 

The explicit sensitivity coefficients described in the previous section characterize the first-order 

change in a system response due to changes in multigroup cross-sections used in the transport 

model. The multigroup cross-sections used in the transport model are typically prepared by unit 

cell calculations that simulate important spatial and energy resonance self-shielding effects. 

Because cross-section uncertainty data are typically provided for unshielded cross-sections, the 

sensitivity coefficients need to be modified to account for the implicit self-shielding effects in the 

unit cell calculations [10].  

 

In SCALE, sensitivity versions of the resonance processing codes are used to compute sensitivity 

coefficients of the shielded cross-sections with respect to input data used in the unit cell 

calculations. The changes in the input data can be related back to changes in the unshielded 

multigroup cross-section data through the use of the chain rule. The final sensitivity coefficient, 

referred to as the complete sensitivity coefficient, is given as 

 

 
explicit implicit

, , ,

'

1 1 1 ' 1
' ( )( ).

' '
R R R

R R
S S S

R R
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 

 
   

     

   
   

   
   (12) 

 

The first term on the right-hand side of Eq. (12) represents the explicit sensitivity coefficient, 

while the second term represents the implicit sensitivity coefficient. In the implicit term, the first 
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summation is over all multigroup cross-sections, α′, while the second summation is over all input 

parameters, ω. The final sensitivity coefficient on the right-hand side relates the changes in the 

input parameters back to the unshielded multigroup cross-sections. It is important to note that 

both the explicit and implicit sensitivity coefficient terms contain direct effect components from 

the cross-section perturbation and indirect effect components from the perturbation in the 

neutron flux. The complete sensitivity coefficients are used with cross-section covariance data to 

calculate the response variance as 

 

 , , '2
'

( ) ( , ')
,

( )( ')
R R

VAR R COV
S S

R
 

 

 

 
   (13) 

 

where VAR(R) represents the absolute variance in response R and 



COV(, ) represents the 

absolute covariance between cross-section 



  and 



 . 
 

3. BWR PIN CELL ANALYSIS 

 

The TSUNAMI GPT capability has been applied to the BWR fuel pin model from Phase 1-1 of 

the OECD UAM benchmark. The BWR fuel pin model consists of a single UO2 fuel pin (2.93% 

enriched 
235

U) modeled at hot zero power (HZP) with reflective boundary conditions. The HZP 

moderator and fuel temperature is 552.833 K, and the moderator density is 753.978 kg/m
3
.  

 

BWR fuel pin sensitivity calculations were performed using both the XSDRNPM and NEWT 

transport models. For the XSDRNPM model, the moderator region was modeled as a cylinder 

with white boundary conditions. In both cases, 238-group self-shielded cross-sections were 

prepared using BONAMIST and CENTRM for the unit cell calculation with ENDF/B-VI cross-

sections. New for the version 6 release of SCALE, BONAMIST uses full-range Bondarenko 

factors to compute sensitivity coefficients for all energy groups used in the implicit sensitivity 

coefficient calculation. In this approach, BONAMIST calculates full-range sensitivity data along 

with the self-shielded cross-section data in the unresolved resonance range. The self-shielded 

cross-section data below the unresolved resonance range are calculated using CENTRM. For the 

NEWT calculations, spatial-angle mesh refinement studies were completed to determine the 

appropriate mesh for the sensitivity analysis. The NEWT calculations were completed using an 

S16 angular quadrature and the spatial mesh shown in Figure 1.  The XSDRNPM calculations 

were completed using an S16 angular quadrature and 4 spatial mesh intervals per material region. 

 

As part of the OECD UAM benchmark specification, S/U analysis is requested for keff as well as 

one-group fission and absorption cross-sections for 
235

U and 
238

U. These values are provided in 

Table I for both XSDRNPM calculations in TSUNAMI-1D and NEWT calculations in 

TSUNAMI-2D. The response uncertainty values were computed using the 44GROUPCOV 

cross-section covariance library from SCALE 6. Both the computed response values and 

response uncertainty values are in good agreement between the two transport models. The one-

group effective microscopic cross-sections were calculated using the 238-group flux spectra in 

the fuel region. For one-group homogenized cross-sections, the cell-weighted flux spectra should 

be used. 
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Figure 1. NEWT spatial mesh for BWR pin cell model. 

 

 

Table I. Response values for BWR pin cell at HZP. 
 

 

TSUNAMI-1D using 

XSDRNPM 

TSUNAMI-2D using 

NEWT 

Response Value 1σ (%) Value 1σ (%) 

keff 1.33612 0.522  1.33952 0.521 
235

U (n,γ) 10.6421 b 1.67  10.6186 b 1.66 
235

U (n,f) 49.0398 b 1.05  49.0353 b 1.04 
235

U [(n,γ)+(n,f)] 59.6819 b 2.21 59.6538 b 2.31 
238

U (n,γ) 0.83995 b 1.32 0.83014 b 1.34 
238

U (n,f) 0.09485 b 3.97 0.09490 b 4.02 
238

U [(n,γ)+(n,f)] 0.93481 b 3.74 0.92503 b 3.79 
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To illustrate the different sensitivity coefficient components computed in TSUNAMI, the 

sensitivity coefficients of the collapsed one-group 
238

U (n,γ) with respect to the 
238

U (n,γ) 

multigroup data are plotted as a function of energy in Figure 2. The complete sensitivity 

coefficient is plotted in blue along with the four major sensitivity components: the explicit-

indirect component is plotted in green, the implicit-indirect component is plotted in black, the 

explicit-direct component is plotted in red, and the implicit-direct component is plotted in pink. 

The 
238

U (n,γ) cross-section provides the only data with a direct effect for this response. The 

explicit-direct component considers only the perturbation of the multigroup data appearing in the 

response function. Therefore, the explicit-direct sensitivity coefficient is always positive because 

the one-group flux-weighted cross-section varies directly with changes in the multigroup data 

(i.e., an increase in the multigroup cross-section data will increase the flux-weighted average 

cross-section). Because the explicit-direct component does not account for changes in the 

neutron flux, the magnitude of the explicit-direct sensitivity coefficient is largest at the peaks of 

the low-lying resonances of 
238

U.  

  

 
 

Figure 2. One-group 
238

U (n,γ) sensitivity coefficient components with respect to the 

multigroup 
238

U (n,γ) data. 
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Accounting for the change in the multigroup neutron flux, the explicit-indirect sensitivity 

coefficients are in the opposite direction of the explicit-direct component. Increasing the 

multigroup cross-section enhances the local depression of the neutron flux in the 
238

U resonance 

groups. This decrease in the neutron flux in turn decreases the value of the response. As with the 

explicit-direct component, the magnitude of the explicit-indirect component is the largest near 

the low-lying resonances of 
238

U.  

 

Barely visible on the plot in Figure 2 are the implicit-indirect and implicit-direct sensitivity 

components. The implicit sensitivities are large near the cross-section resonances due to 

increased self-shielding effects. The complete sensitivity coefficient plot is the summation of 

each of the four sensitivity components. It should be noted that the complete sensitivity 

coefficient is considerably smaller than the explicit-direct sensitivity coefficient. Accounting for 

the flux perturbation through the GPT calculation provides a more accurate estimate of the 

sensitivity coefficients, which impacts the uncertainty analysis and validation of the critical 

system. 

 

Complete sensitivity coefficients by nuclide are provided in Table II for each response. The 

large, negative sensitivity coefficients for 
238

U are due to the dominant role of resonance 

absorption in the fuel pin. The large 
1
H sensitivities indicate a strong indirect dependence of the 

fuel energy spectra due to the hydrogen cross-section as well as a strong implicit dependence due 

to the self-shielding effect in the unit cell calculation. The sensitivity coefficients provided in 

Table II were verified using a series of direct perturbation calculations with each nuclide number 

density perturbed by ± 5%. The sensitivity coefficients to 
234

U and other cladding materials were 

less than 10
-3

 and omitted from Table II.  

 

Table II. Nuclide sensitivity coefficients for each response. 

  

 
Sensitivity coefficients for indicated response 

Nuclide keff 
235

U (n,γ) 
235

U (n,f) 
238

U (n,γ) 
238

U (n,f)  
238

U -2.09E-01 -1.23E-01 -1.43E-01 -1.95E-01 -1.12E-01 
235

U 1.58E-01 -5.40E-01 -6.81E-01 -1.48E-01 1.39E-01 
1
H 1.19E-01 5.94E-01 7.70E-01 1.66E-01 1.03E-01 

16
O (fuel region) -1.35E-02 2.05E-02 2.06E-02 3.92E-02 -3.41E-02 

Zr -1.35E-02 6.42E-03 5.25E-03 9.52E-03 -4.89E-02 
16

O (moderator) -2.78E-03 2.00E-02 2.15E-02 1.70E-02 -2.54E-02 

 

In addition to the sensitivity coefficients shown in Table II, TSUNAMI computes the 

contributions to the response uncertainty due to the cross-section covariance data. Table III lists 

the top 15 cross-section covariance matrices that contribute to keff uncertainty. Likewise, Table IV 

lists the top 15 cross-section covariance matrices that contribute to the one-group 
235

U (n,f) 

uncertainty. In both cases, the top 15 contributors represent more than 99% of the total 

uncertainty in the response due to the cross-section covariance data. The total uncertainty is 

computed by taking the square root of the sum of the squares of each uncertainty contribution.  
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Table III. Uncertainty contribution in keff. 

 

Nuclide-Reaction Nuclide-Reaction 
Percent delta-k/k due to 

this matrix 
238

U (n,γ) 
238

U (n,γ) 3.29E-01 
235

U   
235

U   2.71E-01 
235

U (n,γ) 
235

U (n,γ) 1.81E-01 
238

U (n,n') 
238

U (n,n') 1.27E-01 
235

U (n,f) 
235

U (n,γ) 1.13E-01 
235

U (n,f) 
235

U (n,f) 9.39E-02 
235

U chi 
235

U chi 8.54E-02 
238

U   
238

U   7.91E-02 

Zr (n,γ) Zr (n,γ) 5.53E-02 
1
H (n,γ) 

1
H (n,γ) 2.89E-02 

1
H (n,n) 

1
H (n,n) 2.54E-02 

238
U (n,n) 

238
U (n,γ) -2.11E-02 

238
U (n,n) 

238
U (n,n) 1.96E-02 

238
U (n,f) 

238
U (n,f) 1.77E-02 

238
U (n,n) 

238
U (n,n') -1.61E-02 

 
Total 5.21E-01 

 

 

Table IV. Uncertainty Contribution in one-group 
235

U (n,f). 

 

Nuclide-Reaction Nuclide-Reaction 
Percent delta-R/R due to 

this matrix 
238

U (n,n') 
238

U (n,n') 7.82E-01 
235

U chi 
235

U chi 4.17E-01 
1
H (n,n) 

1
H (n,n) 3.95E-01 

238
U (n,γ) 

238
U (n,γ) 2.66E-01 

235
U (n,γ) 

235
U (n,γ) 1.53E-01 

235
U (n,f) 

235
U (n,f) 1.37E-01 

235
U (n,f) 

235
U (n,γ) 1.29E-01 

238
U (n,n) 

238
U (n,n') -8.41E-02 
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Table IV. Uncertainty Contribution in one-group 
235

U (n,f) 

(continued). 

 

Nuclide-Reaction Nuclide-Reaction 
Percent delta-R/R due to 

this matrix 

Zr (n,n') Zr (n,n') 8.23E-02 
16

O (n,n) 
16

O (n,n) 6.94E-02 

Zr (n,γ) Zr (n,γ) 3.80E-02 
238

U chi 
238

U chi 3.76E-02 
1
H (n,γ) 

1
H (n,γ) 2.61E-02 

238
U (n,n) 

238
U (n,γ) -1.86E-02 

238
U (n,2n) 

238
U (n,2n) 1.50E-02 

 
Total 1.04E+00 

 

As seen in Table III, negative uncertainty contributions exist due to anti-correlations in the cross-

section covariance data. The negative uncertainty contributions are subtracted when computing 

the total response uncertainty. The top contributor to keff uncertainty is the 
238

U (n,γ) cross-

section. This is due to large keff sensitivities to the 
238

U (n,γ) cross-section in the epithermal 

energy range where the relative standard deviation of the multigroup cross-sections range from 

2% to 4%.  Although keff sensitivities to 
1
H cross-sections are comparable in magnitude to 

238
U 

cross-section sensitivities, the 
1
H cross-section uncertainty contributions are much smaller. This 

is because the 
1
H cross-sections have smaller uncertainty. The one-group 

235
U (n,f) response 

sensitivity to 
238

U (n,γ) is smaller than for keff, primarily because the 
238

U (n,γ) cross-section can 

only indirectly change the one-group 
235

U (n,f) response due to perturbations in the fuel flux 

spectra. Consequently, the uncertainty contribution from the 
238

U (n,γ) cross-section is smaller 

for the 
235

U (n,f) response than for keff. Similarly, the uncertainty contribution from the 
235

U (n,f) 

cross-section is larger for the one-group 
235

U (n,f) response than for keff due its larger direct-

effect sensitivity. 

 

 

3. CONCLUSIONS  

 

Computational capability has been developed in SCALE to calculate sensitivity coefficients for 

ratio responses in a critical system. The new capability employs generalized perturbation theory 

to determine the indirect effect of the flux perturbation due to multigroup cross-section 

perturbations for 1D and 2D deterministic transport calculations. The generalized adjoint 

solution can be used to calculate indirect effect sensitivity coefficients within the existing 

framework of TSUNAMI in SCALE.  

 

In this paper, the TSUNAMI GPT capability was applied to selected responses of the BWR pin 

of the OECD UAM benchmark. ENDF/B-VI cross-section data were used for the calculations, 

along with the 44GROUPCOV multigroup cross-section covariance library in SCALE 6. For the 

BWR pin model, response sensitivities and uncertainties were quantified for system keff and one-

group effective cross-sections for 
235

U and 
238

U. The TSUNAMI GPT capability provides a 
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useful means of quantifying homogenized few-group cross-section uncertainties to facilitate 

reactor-core simulation uncertainty analysis.  
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