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Abstract

Equations for sensitivity coefficients of eigenvalue-difference responses such as

reactivity are derived from a unified approach based on both eigenvalue and generalized

perturbation theory. The sensitivity coefficients are utilized for uncertainty analysis of

reactivity responses, and it is shown that these types of responses have inherently larger

relative uncertainties than eigenvalue responses. Monte Carlo calculations are used to

apply the methodology to the analysis of the coolant void reactivity in a 3D model of a

fuel bundle in an advanced CANDU reactor system. The important data sensitivities are

identified, and it is shown that the coolant void reactivity has a large uncertainty due to

nuclear data uncertainties.

† Managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy.
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I. INTRODUCTION

For many years techniques based on first-order perturbation theory have been

developed to treat a wide range of applications in reactor analysis.1-5 Recently,

perturbation methods have been applied in the criticality safety field to assess the impact

of data uncertainties on the computed sub-criticality margin and to quantify the similarity

of calculated sub-critical configurations to the critical benchmark experiments used in

validating the computational methods.6-7 In this work we describe the use of perturbation

theory for sensitivity and uncertainty (S/U) analysis of a response corresponding to the

difference in critical eigenvalues for two distinct systems. The most obvious application

for this method is in determining the data sensitivities and uncertainties of reactivity

responses such as control rod worths, fuel and moderator temperature coefficients, and

void coefficients in a power reactor at two defined conditions. However, another potential

application is in the analysis of benchmark criticals for nuclear data testing and for

establishing computational biases. Nuclear data and methods validation is often

performed by calculating a series of similar benchmark experiments that differ in only a

few parameters such as critical boron concentration, fuel enrichment, etc. Data

deficiencies can introduce a computational bias manifested as a trend in

calculated/measured eigenvalues versus experiment parameters. The S/U methods

described here can be applied directly to the difference in the computed eigenvalues of

two benchmarks to establish the sensitivity of the bias to various nuclear data used in the

calculations. This procedure may provide insight for improved data evaluation, as well as

a better understanding of the sources of computational biases.
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In this paper, the difference in lambda eigenvalues is called the “reactivity”

associated with two “states,” even though the states may actually correspond to different

critical systems, as in the case of two benchmark experiments. Simple eigenvalue

perturbation theory can be used to derive sensitivity coefficients for the eigenvalue-

difference of the two distinct states. This approach for addressing reactivity responses is

attractive because the SCALE code system, developed by Oak Ridge National Laboratory

(ORNL), includes automated calculation sequences for eigenvalue S/U analysis.8 The

sequence called TSUNAMI-1D9 uses one-dimensional (1D) discrete ordinates, while

TSUNAMI-3D10 uses Monte Carlo to calculate eigenvalue sensitivities in arbitrary 3D

geometry. Both code sequences include techniques to account for perturbations in cross-

section self-shielding.11

An alternative formulation based on “exact perturbation theory” represents the

reactivity response as a bilinear functional ratio.12 During the 1960s and 1970s,

generalized perturbation theory (GPT) was developed to address these types of

responses,13 as discussed in detail by Stacy.14 The GPT method involves solving

inhomogeneous “generalized adjoint” and “generalized forward” transport equations.

Gandini has also described a method called “equivalent generalized perturbation theory

(EGPT),” in which the generalized forward and adjoint solutions are replaced by

solutions of homogeneous equations.15 In the case of reactivity responses, this approach

is equivalent to simply applying eigenvalue perturbation theory at the two states, as done

in this work.

In section II of this paper, it is shown that a unified approach can be used to

derive sensitivity coefficient expressions for the two different formulations of the
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eigenvalue-difference response, which leads to two different types of reactivity

sensitivity coefficients — one based on eigenvalue perturbation theory and the other on

GPT. Section III examines how eigenvalue-difference sensitivities are used to compute

the uncertainty in a reactivity response due to nuclear data uncertainties. It is shown that a

covariance term is present as a result of correlations in the two states, and that reactivity

responses inherently have higher relative uncertainties than the eigenvalue uncertainties

for the two states. In section IV, eigenvalue-difference sensitivity coefficients computed

by perturbation theory are compared with “direct” results based on finite difference

calculations for a 1D model of a light water reactor (LWR) pincell. Finally, Monte Carlo

calculations are used to obtain sensitivity coefficients for the coolant-voiding reactivity in

a 3D model of a fuel bundle in the advanced CANDU reactor, ACR-700. A comparison

of the sensitivity coefficients shows that the reactivity response can be much more

sensitive to data uncertainties than the eigenvalues for the two states. This leads to a

significantly higher uncertainty in the calculated reactivity.

II. REACTIVITY EXPRESSIONS

It is assumed that a reactor system is initially in some well defined state 1 having

a lambda-mode eigenvalue of λ1, where the lambda eigenvalue is defined as the

reciprocal of the multiplication factor; i.e., 1
1

1
k

 . The neutron flux in state 1 of this

system is represented by the fundamental solution to the forward lambda mode

eigenvalue equation

(L1 - λ1P1)Φ1 = 0 , (1)



MARK L. WILLIAMS

5

where L1 and P1 are the production and loss operators for state 1. The static reactivity ρ

for state 1 is defined as 1 1ρ 1 λ  .

Suppose that the following arbitrary modifications are made in the system

L1 → L2 = L1 +  ΔL ; (2a)

P1 → P2 = P1 +  ΔP . (2b)

The system modifications have no restrictions. For example, these could correspond to

changes in fuel loading, complete voiding of the coolant density, or the temperature

difference between cold and hot core conditions. The modifications transform the original

system to a new distinct configuration designated as state 2 with a lambda eigenvalue of

λ2 = λ1 + Δλ1→2 (3)

and static reactivity of ρ2 = 1- λ2. The perturbed system has an altered flux distribution

given by the solution of the eigenvalue equation,

(L2 - λ2P2) Φ2 = 0 . (4)

The adjoint equations for Eqs. (1) and (4), respectively, correspond to

* * *
1 1 1 1( λ )Φ 0 L P (5a)

and

* * *
2 2 2 2( λ ) Φ 0 L P . (5b)

Expressions for the two lambda eigenvalues λ1 and λ2 are found by taking the inner

products of both sides of Eqs. (1) and (4), respectively, with the unspecified weight

functions *
1 and *

2, and solving for:

*
1 1 1

1 *
1 1 1

Φ
λ

Φ






L

P




and (6a)



SENSITIVITY AND UNCERTAINTY ANALYSIS FOR EIGENVALUE-DIFFERENCE RESPONSES

6

*
2 2 2

2 *
2 2 2

Φ
λ

Φ






L

P




. (6b)

Equations (6a) and (6b) are bilinear ratio forms known as the Rayleigh quotient

expression for the eigenvalue. It is emphasized that *
1and *

2 are arbitrary, and not

necessarily solutions to the adjoint equations in Eqs. (5a) and (5b). The eigenvalue

expressions in Eqs. (6a) and (6b) are exact for any non-zero functions [ *
1, *

2 ] defined

over the same domain as the solutions of Eqs. (1) and (3), as long as they do not make the

denominators equal to zero (i.e., *
1and *

2 cannot be orthogonal to the fission sources).

Throughout this work, a tilde will continue to be used to represent arbitrary functions of

this type.

Two additional eigenvalue expressions are obtained by taking the inner products

of the adjoint equations in Eqs. (5a) and (5b), respectively, with two other unspecified

weight functions 1and 2, and solving for the eigenvalue:

* *
1 1 1

1 * *
1 1 1

Φ
λ

Φ






L

P




and (7a)

* *
2 2 2

2 * *
2 2 2

Φ
λ

Φ






L

P




. (7b)

Again, the above expressions are exact for any two arbitrary functions 1 and 2 in the

flux domain that are non-orthogonal to the adjoint fission sources. Equations (7a) and

(7b), along with Eqs. (6a) and (6b), are bilinear functional ratio expressions for the

eigenvalues. In this work, they are the basis for deriving eigenvalue and reactivity

sensitivity coefficients in a consistent and unified manner.
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The reactivity insertion/withdrawal associated with the designated change of state

is defined as

1 2 2 1 1 2    . (8)

In the remainder of this paper, the term “reactivity” will refer to this reactivity change,

rather than the static reactivity of a fixed state. Aside from a difference in sign, the

reactivity is equivalent to the lambda eigenvalue-difference. The above reactivity can be

expressed in several different ways. By substituting Eqs. (6a) and (6b) into Eq. (8), it is

seen that

ρ1→2 =
*
1 1 1

*
1 1 1

Φ

Φ





L

P




-

*
2 2 2

*
2 2 2

Φ

Φ





L

P




. (9)

Substituting Eqs. (7a) and (7b) into Eq. (8) would give an analogous equation in terms of

the adjoint solutions. Since the weight functions *
1and *

2 are arbitrary (for example,

they could be defined to be unity), it is necessary only to perform two forward eigenvalue

calculations—i.e., at state 1 and state 2, respectively—to compute the reactivity by

evaluating the integrals in Eq. (9). Alternatively, adjoint calculations could be performed

at state 1 and state 2, respectively, and Eqs. (7a) and (7b) used to compute the two ratios

appearing in the reactivity expression. In either case, essentially the same amount of

effort is required to evaluate the bilinear ratios as to compute the eigenvalues for the two

states and subtract, as in Eq. (8).

Equation (9) can also be manipulated to give another reactivity expression known

as “exact perturbation theory.” This is done as follows: substitute Eq. (2a) for L2 in the

second term on the right side of Eq. (9),
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ρ1→2 =
*
1 1 1

*
1 1 1

Φ

Φ





L

P




-

* *
2 1 2 2 2

* *
2 2 2 2 2 2

Φ Φ
+

Φ Φ

   
    

L L

P P

 

 
. (10)

The first term inside of the brackets can be rearranged as

*
2 1 2

*
2 2 2

Φ

Φ





L

P




=

*
2 1 2

*
2 1 2

Φ

Φ





L

P




-

*
2 1 2

*
2 1 2

Φ

Φ





L

P





*
2 2

*
2 2 2

Φ

Φ





P

P




,

and when this expression is substituted back into Eq. (10), we see that

ρ1→2 =
*
1 1 1

*
1 1 1

Φ

Φ





L

P




-

*
2 1 2

*
2 1 2

Φ

Φ





L

P




+

*
2 1 2

*
2 1 2

Φ

Φ





L

P





*
2 2

*
2 2 2

Φ

Φ





P

P




-

*
2 2

*
2 2 2

Φ

Φ





L

P




. (11)

Equation (11) is completely general, but if the arbitrary weight function *
2 is defined to

be the particular function *
1Φ that is the solution to Eq. (5a), then the first two terms on

the right side of Eq. 11 are both equal to λ1 . Therefore, an exact perturbation theory

expression for the reactivity is

ρ1→2 =
*
1 1 2

*
1 2 2

Φ ( ) Φ

Φ Φ

 P L

P
= λ1

*
1 2

*
1 2 2

Φ Φ

Φ Φ

P

P
- λ2

*
1 2

*
1 2 2

Φ Φ

Φ Φ

L

L
. (12)

These equations also can be derived directly from the lambda mode eigenvalue

equations by applying standard perturbation theory techniques.14 Equation (12) is not

limited to small perturbations in ΔL and ΔP. Just as in Eq. (9), the evaluation of Eq. (12)

again requires two eigenvalue calculations; however, in this case, the calculations

correspond to a forward solution at one state and an adjoint at the other, and no arbitrary

weight functions appear.

Each of the derived reactivity expressions requires two solutions of the lambda

mode eigenvalue equation. The most common method to determine the reactivity

associated with a known change in state has been to subtract the lambda eigenvalues

computed for the two states. However, in dealing with small reactivities associated with a
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well-defined change in state, it may be more accurate to use exact perturbation theory

since it does not require subtracting two computed quantities with nearly the same

magnitude.

III. SENSITIVITY COEFFICIENTS

The theoretical basis for sensitivity analysis of eigenvalue responses, as well as

reactivity responses, is well established. Here we present a unified derivation, so that the

relationship between reactivity sensitivity coefficients based on traditional eigenvalue

differences and on GPT can be seen.

The computed value of a response R, such as the eigenvalue at a single state or

the reactivity change between two states, depends upon the input multigroup cross

sections and modeling parameters used in the calculation. In S/U analysis, it is desired to

determine how much the response varies as a result of changes in the reference input

parameters. The response variation is usually approximated by the first-order terms in a

Taylor series expansion about the initial data α, so that the response change is

proportional to the data change, and the contributions of each parameter can be computed

independently and summed to obtain the total response change. The first-order

approximation relating
ΔR
R and some data perturbation

α
α

Δ
is given by

ΔR
R

~ iR αS α
α

Δ , (13)

where the relative sensitivity coefficient is defined as α RS
R aiR a

∂

. In this work, we

derive theoretically exact expressions for the linear sensitivity coefficients of a reactivity
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(i.e., eigenvalue-difference) response. However, even if the sensitivity coefficients, and

hence the response derivatives, are known exactly, the reactivity perturbation is not

computed exactly because the higher-order terms are omitted in Eq. (13). Since the

reactivity depends upon eigenvalue responses in two states, it is useful first to develop

eigenvalue sensitivity coefficients expressed in a manner that is readily extended to the

reactivity response.

III.A. Eigenvalue Sensitivity Coefficients

The relative sensitivity coefficient for the lambda eigenvalue response is given by

iα
αS

α



 , (14a)

and the relative sensitivity coefficient for the multiplication factor (k =1/λ) is

k,α ,α
α k

S S
k α 


 


  . (14b)

The tilde appearing in the sensitivity notation indicates that the most general lambda

expressions given in Eqs. (6a–6b) and (7a–7b) may contain arbitrary weight functions

such as 1, 2, *
1, *

2, etc. The eigenvalue derivatives with respect to αcan be found by

differentiating the Rayleigh quotients in Eqs. (6a) and (6b), for states 1 and 2

respectively. For example, the derivative of λfor state 1 is equal to

1λ
α




  =  λ1

1 1* *
1 1 1 1

* *
1 1 1 1 1 1

Φ Φ
α α
Φ Φ

      
 



L P

L P

 

 
+

1 1* *
1 1 1 1

* *
1 1 1 1 1 1

Φ Φ
α α
Φ Φ

      
  



L P

L P

 

 
. (15)
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Substituting the definition of λ1 from Eq. (6a) into Eq. (15), and then multiplying by
1

α
λ

,

the relative sensitivity coefficient for the lambda eigenvalue of state 1 is found to be

1αS
 =

 1 1* 1 * * *
1 1 1 1 1 1 1

* *
1 1 1 1 1 1 1 1

α α αΦλ Φ λα α α
Φ Φ

                   
  

L P
L P

P P

 

 
. (16)

An analogous procedure is applied to Eq. (6b) to find the λ2 sensitivity coefficient, which

corresponds to Eq. (16) with subscript “1” replaced by “2.” Two more expressions for the

sensitivity coefficients of λ1 and λ2 also can be found by differentiating Eqs. (7a) and

(7b), respectively. The resulting 1αS
 expression, for example, is similar to Eq. (16) except

that the flux and the L and P operators are replaced by their adjoints.

The general expression for the lambda sensitivity coefficient in Eq. (16) contains

one arbitrary function [ *
1] along with one function [ 1Φ ] obtained from an eigenvalue

solution, suggesting that only a single calculation (either forward or adjoint) is required to

determine the sensitivity coefficient for a given state. However, this conclusion is

misleading because Eq. (16) also contains the unknown values for the flux (or adjoint)

derivatives such as 1Φ
α




, which must be found from additional calculations. Simply

ignoring these terms introduces a first-order error in the sensitivity analysis.

The equations obeyed by the α-derivatives of the forward and adjoint fluxes in the

two states are found by differentiating forward Eqs. (1) or (4) and adjoint Eqs. (5a) or

(5b) with respect to α. For state “s” (s = 1, 2), this operation gives

(Ls - λsPs) sΦ
α




= - s s
s sΦ

α α
     

L P + s
s s

λ Φ
α




P ; (17a)
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 
*
s* *

s s s
Φλ
α




L P = -
* *
s s *

s sλ Φ
α α

     

L P + s * *
s s

λ Φ
α




P . (17b)

Equations (17a) and (17b) are not eigenvalue equations, but rather are examples of

“generalized” forward and adjoint equations that have a singular operator such as (L1 −

λ1P1) and an inhomogeneous source term.12 These types of generalized solutions are the

basis of GPT, which is discussed later.

In principle, Eq. (17a) can be solved to obtain the flux derivative, which could

then be substituted into Eq. (16) to obtain the sensitivity coefficient. However, this

approach usually is inefficient because Eq. (17) must be solved for each data parameter α.

An alternative approach is to judiciously select the floating weight functions

appearing in the general sensitivity coefficient expression. The term containing the flux

derivative in Eq. (16) will vanish if the arbitrary function *
1is defined to be the solution

to the adjoint equation in Eq. (4), so that *
1→ *

1Φ . Substituting *
1Φ for *

1in Eq. (16)

produces the conventional expressions for the eigenvalue sensitivity coefficients:

sαS =

s s*
s s s

*
s s s s

Φ λ Φ
α α

Φ Φ

     


L P

P
=

s s* *
s s s s

* *
s s s s s s

Φ Φ Φ Φα α

Φ Φ Φ Φ

 
 



L P

L P
, (18)

where s=1 or 2 to designate the state of interest. The notation in Eq. (18) has no tilde on

the sensitivity coefficient, since this expression no longer contains any arbitrary weight

functions. These expressions are exact and no longer contain any arbitrary functions, but

they require the solution of two eigenvalue equations (a forward and adjoint) for the state

of interest. However, the adjoint eigenvalue equation must be solved only once—a

substantial reduction in computation effort compared with solving Eq. (17a) or (17b) for

eachα. The TSUNAMI calculation sequences in SCALE perform forward and adjoint
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eigenvalue calculations in 1D or 3D geometry and then evaluate Eq. (18) to obtain group-

dependent sensitivity profiles for each nuclide-reaction pair.

III.B. Reactivity Sensitivity Coefficients for Data Parameters

The relative sensitivity coefficient for the reactivity response ρ1→2 is defined as

i

1 2
ρα

1 2

α ρS
ρ α








. (19)

Unlike the eigenvalue response, the reactivity response may be either positive or

negative. This can be a source of confusion when interpreting the relative sensitivity

coefficient for the reactivity; hence, a useful convention is to use the absolute value of

ρ1→2 appearing in the denominator of Eq. (19). With this convention, a negative value of

iραS means that an increase in the value of αwill cause a negative reactivity to become

more negative and a positive reactivity to become less positive. In other words, the sign

of iραS is determined by the sign of Δρ1→2 resulting from a positive Δα.

The reactivity sensitivity coefficient is obtained by differentiating either the

eigenvalue-difference equation in Eq. (9) or the exact perturbation theory expression in

Eq. (12). First, consider the approach based on eigenvalue differences. In this case the

reactivity sensitivity coefficient is equal to

i

1 2
ρα

1 2

αS
ρ α α

     
 = i i1 1 α 2 2 α

1 2

S S 



 


 
. (20)

Thus the reactivity sensitivity can be calculated directly from the eigenvalue sensitivity

coefficients at states 1 and 2, respectively. Again, the tilde on the sensitivity coefficient

implies that arbitrary functions may appear in Eq. (20).
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Substituting the general expressions for the eigenvalue sensitivity coefficient from

Eq. (16) into Eq. (20) gives the general equation for the reactivity sensitivity coefficient:

iραS =
1 2

α
ρ

1 1 2 2* *
1 1 1 2 2 2

* *
1 1 1 2 2 2

Φ Φ
α α α α

-
Φ Φ

                     


 


L P L P

P P

 

 

+
   1 2* * * * * *

1 1 1 1 2 2 2 2

* *
1 1 1 2 2 2

Φ Φ
α α

-
Φ Φ

       


  


L P L P

P P

 

 
. (21)

The same type of derivation can also be done using Eqs. (7a) and (7b) rather than

Eqs. (6a) and (6b) to evaluate the eigenvalue derivatives.

Equation (21) shows that the reactivity sensitivity coefficient contains two

arbitrary weight functions [ *
1, *

2] and two eigenvalue solutions [ 1Φ , 2Φ ], as well as the

flux derivatives for states 1 and 2. As was the case for eigenvalue sensitivities, the terms

containing these derivatives can be eliminated by selecting the two arbitrary weight

functions appropriately. It is easily shown that a special form of the general reactivity

coefficient containing no flux or adjoint derivatives is given by the following equation:

iραS =

1 1 2 2* *
1 1 1 2 2 2

* *
1 2 1 1 1 1 2 2 2 2

α α α α
Φ Φ Φ Φα α α α

Φ Φ Φ Φ 

                      
  

L P L P

P P
. (22)

Four eigenvalue solutions—a forward and an adjoint at both states 1 and 2—are now

required to evaluate the reactivity sensitivity coefficient in Eq. (22) that contains no

flux/adjoint derivatives, whereas the eigenvalue sensitivity expressions require only two
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eigenvalue solutions. This form of the reactivity sensitivity coefficient contains no

arbitrary weight functions, so a tilde does not appear on S in Eq. (22). A nice feature of

Eq. (22) is that it is easily expressed in terms of eigenvalue sensitivity coefficients for the

two states, as shown in Eq. (20). It has also been shown that Eq. (22) can be obtained

from EGPT.15

The preceding development uses the reactivity expression defined in terms of

eigenvalue-differences. We now derive the reactivity sensitivity coefficient from the

exact perturbation theory expression. The result appears quite different from the previous

equations. Taking the derivative of Eq. (12) with respect to αand rearranging gives

1 2ρ
α


 =  ρ1→2

2* *
1 1 2 1 2

* *
1 1 2 1 2 2

Φ Φ Φ Φα α α
Φ( )Φ Φ Φ

( )          
  

L P P

L P P

+ ρ1→2

*
1 2*

1 2 1 1

* *
1 1 2 1 1 2

Φ Φ
Φ Φα α

Φ( )Φ Φ( )Φ

( ) ( )  
           

  

L P L P

L P L P

- ρ1→2

*
2 1*

1 2 2 2

* *
1 2 2 1 2 2

Φ ΦΦ Φ
α α

Φ Φ Φ Φ

  
    
 
  

P P

P P
+ 1

α



*
1 2

*
1 2 2

Φ PΦ

Φ P Φ


. (23)

Although Eq. (23) depends only on the two functions *
1Φ and Φ2, it also contains their

unknown derivatives; and, unlike Eq. (21), it contains no “free” arbitrary functions that

can be used to make these terms vanish. These derivatives could be obtained by solving

Eqs. (17a) and (17b) for a specified data parameter α; i.e.,



SENSITIVITY AND UNCERTAINTY ANALYSIS FOR EIGENVALUE-DIFFERENCE RESPONSES

16

(L2 - λ2P2) 2Φ
α




= - 2 2
2 2Φα α

     
L P + 2

2 2
λ Φ
α




P ; (24a)

 
*
1* *

1 1 1
Φλ
α




L P = -
* *
1 1 *

1 1λ Φ
α α

     

L P + 1 * *
1 1

λ Φ
α




P . (24b)

However, as previously mentioned, it is usually not practical to solve the above equations

for allαof interest; hence an alternative approach based on GPT is used.14 GPT

introduces the “generalized forward” and “generalized adjoint” functions Г and Г*,

respectively, defined over the same domains as Φand *Φ . For the exact perturbation

theory formulation of the reactivity response in Eq. (12), the generalized functions obey

the singular inhomogeneous equations:

1 1 1 1 1 2( λ )Γ Q Φ  L P A and (25a)

* * * * *
2 2 2 2 2 1( λ )Γ Q Φ   *L P A , (25b)

where the operator A is defined as

A ≡ 1

*
1 1 2Φ ( )Φ
 
 

L P
L P

- 2

*
1 2 2Φ Φ
P
P

. (26)

The generalized forward and adjoint equations have several interesting features.

Because the operators appearing on the left sides of Eqs. (25a) and (25b) are singular, the

generalized source terms 1Q and *
2Q must be orthogonal to the respective homogeneous

solutions (i.e., solutions obtained with source terms equal to zero) in order for the

inhomogeneous equation to have a solution.12 The homogeneous solutions of Eqs. (25a)

and (25b), respectively, correspond to the forward and adjoint functionsΦ1 and *
2Φ ,

which are the fundamental lambda-eigenfunctions of the transport equations in Eqs. (1)

and (5b); therefore, the source conditions required for solutions to exist are
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* *
1 1 2 2ΦQ ΦQ 0  .

It can be seen that the generalized sources in Eq. (25) obey these existence

requirements; however, this does not guarantee unique solutions to the inhomogeneous

equations. It is easily verified that if the homogeneous solution is multiplied by any

constant and added to a particular solution of the inhomogeneous equation, then the result

also will be a solution.12 Thus the general solutions to Eqs. (25a) and (25b) are

1 ≡ 1̂ + β1Φ1 and (27a)

*
2Γ ≡ *

2̂ + β2
*
2Φ , (27b)

where 1̂ and *
2̂ are particular inhomogeneous solutions that contain no fundamental

mode andβ1 and β2 are arbitrary constants. These constants can be determined from

auxiliary constraints placed on the generalized forward and adjoint solutions, as will be

shown later.

Following the standard approach in perturbation theory, we form the inner

product of
*
1Φ
α


 with Eq. (25a), and of Г with Eq. (24b), and subtract to obtain

*
1

1 2

*
1 1 2

Φ Φ
α

Φ ( )Φ

( )  


 

L P

L P
= -

* *
1 1 *

1 1 1Φα α
      

L P + 1 * *
1 1 1

λ Φ
α

 


P

+

*
1

2 2

*
1 2 2

Φ Φ
α

Φ Φ




P

P
(28a)

Similarly, taking the inner product of 2Φ
α




with Eq. (25b), and of Г* with Eq. (24a), and

then subtracting provides the equation
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 
 

2 * * *
1 1

*
1 1 2

Φ Φ
α

Φ Φ

  


 

L P

L P
= - 2 2*

2 2 2Φ
α α

      

L P + 2 *
2 2 2

λ Φ
α

 


P

+

2 * *
2 1

*
1 2 2

Φ Φ
α

Φ Φ




P

P
. (28b)

Substituting Eqs. (28a) and (28b) into Eq. (23) eliminates the forward and adjoint

derivatives to give

1 2ρ
α



= ρ1→2

2* *
1 1 2 1 2

* *
1 1 2 1 2 2

Φ Φ Φ Φα α α
Φ( )Φ Φ Φ

( )        
  

  

L P P

L P P

−ρ1→2  

* *
1 1 2 2* *

1 1 1 2 2 2Φ Φ
α α α α

                       

L P L P

+  ρ1→2

*
1 22 1* * *

2 2 2 1 1 1 *
1 1 2

Φ Φλ λ
Φ Φα α Φ( )Φ

                

P
P P

L P
. (29)

The last bracketed expression in Eq (29) contains the unknown derivatives of the lambda

eigenvalues for states 1 and 2. These can be eliminated by defining the homogeneous

components of functions Г and Г* appropriately. The 2

α

 term will be zero if the

coefficient *
2 2 2ΦP → 0, which implies that the generalized adjoint function contains 

no fundamental mode harmonic. This is accomplished by defining the parameter2 in

Eq. (27b) to be zero so that *
2→ *

2̂ . To make the term containing 1

α

 vanish, it is

necessary that the generalized forward function satisfy the constraint condition,
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*
1 2* *

1 1 1 *
1 1 2

Φ Φ
Φ 0

Φ( )Φ


  

 

P
P

L P
. (30)

Substituting Eq. (27a) into Eq. (30), solving for the parameter β1 gives

*
1 2

1 * *
1 1 1 1 1 2

Φ Φ

Φ Φ Φ ( )Φ




 

P

P L P
, (31a)

so that

1 ≡ 1̂ +
*
1 2

1* *
1 1 1 1 1 2

Φ Φ
Φ

Φ Φ Φ( )Φ

 
    

P
P L P

. (31b)

If there is no difference in the fission production operators for states 1 and 2 (i.e.,

ΔP→0), as often occurs for coolant void reactivity or moderator temperature coefficient

responses, then the value of β1 is zero, and the generalized forward function also

contains no fundamental mode harmonic. Otherwise, the fundamental mode component

should be included in Γ1 . The generalized forward and adjoint equations are most easily

solved numerically by computing the “uncontaminated” solutions 1̂ and *
2̂ that have

no fundamental harmonic. The uncontaminated solutions then are converted to the

general solution by adding the amount of fundamental mode shown in Eq. (31b).

Assuming that the generalized forward and adjoint functions are defined as

described above, the last bracketed term in Eq. (29) becomes zero. The resulting

expression is substituted into Eq. (19) to obtain another exact equation for the reactivity

sensitivity coefficient:

Sρ,α =

2* *
1 1 2 1 2

* *
1 1 2 1 2 2

α α αΦ Φ Φ Φα α α
Φ( )Φ Φ Φ

( )        
  

  

L P P

L P P

direct
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−
* *
1 1 2 2* *

1 1 1 2 2 2
α α α αΦ Φ
α α α α

                       

L P L P

indirect
. (32)

This equation can also be derived from a variational principle.14

In the parlance of GPT, the first bracketed term in Eq. (32) is called the “direct”

effect of the perturbation in α. It corresponds to the partial α-derivative of the response,

evaluated at the reference (unperturbed) values of the flux and adjoint functions. Once the

reference reactivity has been calculated by solving the forward and adjoint equation at

states 1 and 2, respectively, the direct effect is found easily with no additional flux or

adjoint solutions. The last bracketed expression in Eq. (32) is the “indirect” effect that

accounts for the impact of the α-perturbation on the reference solutions *
1 and 2 .

Evaluation of the indirect effect requires additional calculations for the generalized

forward and adjoint functions. Several codes have been developed for this purpose.12

Because the expressions in Eqs. (32), (22), and (20) must all be equivalent, a

relationship can be established between the generalized and the regular forward/adjoint

functions. First, the direct term [first bracketed term on the right side of Eq. (32)] is

manipulated to obtain

 Sρ,α direct
= i i1 1 α 2 2 α

1 2

S S 



  
  

 

* *
2 1 1 1 *

1 1* *
1 2 2 1 1 1

α α
Φα αΦ Φ

     
             

L P
P P

* *
2 1 2 2

2 2* *
2 2 2 1 1 1

α α Φ
α αΦ Φ

                  

L P
P P

. (33)
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From Eq. (20), the first term on the right side is equal toSρ,α; therefore, after substituting

Eq. (33) back into the GPT expression in Eq. (32), the following identities are found:

2 1

* *
1 2 2 1 1 1Φ Φ

  
       P P

; (34a)

* *
2 1*

* *
2 2 2 1 1 1Φ Φ

  
        P P

. (34b)

The above equations show that the generalized functions for reactivity responses are

simply related to differences in the appropriately normalized forward and adjoint

functions, respectively, of the two states.

In this section, two different expressions have been derived for the reactivity

sensitivity coefficient. The first, given by Eq. (20) or (22), is based on the eigenvalue-

difference definition of reactivity; and the second, given in Eq. (32), is based on the exact

perturbation theory formulation. It is interesting to note that both the GPT and

eigenvalue-difference expressions contain four functions that must be calculated. The

eigenvalue-difference formulation requires a regular forward and regular adjoint

eigenvalue calculation at both system states, while the GPT expression requires a

generalized forward and a regular adjoint calculation at state 1, and a regular forward and

a generalized adjoint calculation at state 2. Both expressions for the linear sensitivity

coefficients have no approximations, so in theory the reactivity perturbation estimated

with either formulation is exact through all first-order terms. However, the eigenvalue-

difference method has the great advantage of using standard eigenvalue sensitivity

coefficients for the two states, so established S/U techniques such as those performed by

TSUNAMI can be utilized. The generalized solutions are more difficult to compute and
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require additional eigenvalue calculations to treat the fundamental mode components.

Furthermore, unlike eigenvalue sensitivity cases where 3D forward and adjoint solutions

can be evaluated rather routinely using Monte Carlo codes,10 no Monte Carlo methods are

currently available for computing generalized solutions.

Thus a method based on eigenvalue differences appears to be the better approach

for S/U analysis of reactivity associated with two distinct states. However, it has been

suggested that the GPT approach could possibly provide more accurate numerical results

in some cases because the generalized sources explicitly contain the system change-of-

state terms; therefore, the generalized solutions are tightly coupled to the space-

dependent perturbations that generate the reactivity.14 Nevertheless, in this work,

reactivity sensitivity coefficients are computed from Eq. (20), which is easily evaluated

from conventional eigenvalue sensitivity coefficients at the two states. A computer

program has been developed to read the eigenvalue sensitivity profiles computed by

TSUNAMI and combine them to obtain group-dependent reactivity sensitivity

coefficients by nuclide-reaction pair.

III.C. Implicit Sensitivity Effects

The sensitivity coefficient expressions previously derived describe the effect of

varying parameters, such as multigroup cross sections, appearing explicitly in the

transport solved for the eigenvalue. In addition to having an explicit impact on the

calculated eigenvalue, perturbations in nuclear data or in concentrations of one material

may alter the multigroup cross sections of other materials as a result of resonance self-
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shielding effects. These indirect variations in the self-shielded cross sections cause

additional changes in the eigenvalue, which have been called the “implicit effects” of the

original data perturbation.16 For example, direct perturbations in non-fuel materials such

as moderators can implicitly affect the group cross sections of fuel nuclides owing to

changes in resonance self-shielding associated with Dancoff effects. It has been shown

that implicit changes in the resonance capture cross sections of 238U can be an important

component of the overall eigenvalue sensitivity coefficient in thermal systems.17 Implicit

effects are handled by adding an additional term to the usual explicit sensitivity

coefficient. The complete eigenvalue sensitivity coefficient, (com)Sλ , is then defined as11

(com) (ex) (im)S = S + Sλ λ λ

where

(ex)Sλ,α is the explicit eigenvalue sensitivity coefficient given in Eq. (18 );

(im)Sλ,α is the implicit sensitivity coefficient defined as

(im) (ex)S = S Sλ,α λ,α α,αα
  

; and

Sα,α is a sensitivity coefficient of multigroup data α' to changes in data α.

For example, Sα,α could correspond to the sensitivity of the shielded 238U multigroup

cross section to changes in the hydrogen scatter cross section. The TSUNAMI

computation sequence calculates the implicit term for eigenvalue sensitivities.11 Thus if

the reactivity sensitivity coefficient is determined from Eq. (20) based on eigenvalue

differences, the implicit effects are automatically taken into account by TSUNAMI.
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V. UNCERTAINTY ANALYSIS FOR EIGENVALUE-DIFFERENCES

One of the common applications of sensitivity coefficients is to determine the

uncertainty in responses due to uncertainties in input nuclear data. ORNL has automated

this procedure to determine the uncertainty in predicted multiplication factors for

criticality safety analysis.11 Uncertainty analysis for a reactivity response can be

conducted in a similar manner. The absolute variance (VAR) of an eigenvalue-difference

response such as the reactivity ρ1→2 is found from well-known propagation of error

expressions to be equal to

VAR(ρ1→2 ) ≡VAR(λ1-λ2 ) = VAR(λ1) + VAR(λ2) −2COV(λ1 , λ2) . (35)

The variance in the reactivity is not simply the sum of the variances in the computed

eigenvalues for states 1 and 2 if these uncertainties are correlated as a result of using the

same nuclear data and models in the transport calculations. The covariance term accounts

for the correlation in the two states and may either be a positive or negative effect.

The corresponding relative variance of the eigenvalue-difference is equal to

2
ρσ =

2

1

1 2

λ
λ λ

 
  

2
λ1σ +

2

2

1 2

λ
λ λ

 
  

2
λ2σ −

 
1 2

2

1 2

2λλ

λ-λ

 
 
  

λ2, λ1σ , (36)

where

2
ρσ ≡ 1 2

2
1 2

VAR(ρ )
ρ




= relative variance in the calculated reactivity;

2
λ1σ ≡ 1

2
1

VAR(λ)
λ , 2

λ2σ ≡ 2
2
2

VAR(λ)
λ = relative variances of the eigenvalues; and

2, 1  ≡ 1 2

1 2

COV(λ,λ)
λλ = relative covariance of the two eigenvalues.
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The square roots of the above variances correspond to the respective response standard

deviations.

It can be seen from Eq. (36) that the relative variance of the reactivity can be

substantially greater than the eigenvalue variances whenever the difference in the

eigenvalues of the two states is small because the coefficients of 2
λ1σ and 2

λ2σ become

large. Since this is usually the case for reactivity changes in a reactor, the relative

uncertainties in reactivity responses are inherently large.

To obtain the relationship between the reactivity variance and the nuclear data

uncertainties, assume that M different types of nuclear data—such as multigroup cross

sections for all nuclide-reaction pairs—are used in calculating the reactivity. We will

define the M by M nuclear data uncertainty matrix to be Cαα. This symmetric matrix

contains relative variances on the diagonal and relative covariances on the off diagonal.

Let ρS be an M dimensional row vector containing the relative sensitivity coefficients for

reactivity, as defined in Eq. (22). The relative variance in the calculated reactivity due to

the nuclear data uncertainties can be computed from

2
ρσ = ρS ααC T

ρS , (37)

where the superscript T indicates a transpose operation.

If we define λ1S and λ2S to be M dimensional row vectors containing relative sensitivity

coefficients for all nuclear data used in computing the eigenvalues of the two states, then

from Eq. (20) it is seen that the reactivity sensitivity vector is

ρS =
1 2

1



 λ1S -

1 2

2



 λ2S . (38)

The uncertainty in the calculated reactivity is found by substituting Eq. (38) into Eq. (37):
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2
ρσ =

2

1

1 2

λ
ρ

 
 
 

λ1S ααC T
λ1S +

2

2

1 2

λ
ρ

 
 
 

λ2S ααC T
2λS − 1 2

2
1 2

2λλ
ρ

 
 
 

λ2S ααC T
λ1S . (39)

Another parameter of interest for S/U analysis of eigenvalue-difference responses

is the degree of correlation between the two states. The correlation coefficient is defined

so that a value of +1 indicates full correlation in the eigenvalues, 0 indicates no

correlation, and −1 indicates anti-correlation between the two states. The correlation

coefficient C1,2 for the two eigenvalue states is equal to

C1,2 ≡
1 2

1 2

, 

 



  =
1 2 2

λ2 αα λ1

λ αα λ1 λ αα λ

S C S

S C S S C S

T

T T . (40)

When this definition is substituted into Eq. (36), it is found that

2
ρσ = 1

2

1

1 2

λ

ρ

 
 
  

 + 2

2

2

1 2

λ

ρ

 
   

 - 2 C1,2
1 21 λ 2 λ

1 2 1 2

λ λ

ρ ρ 

  
  
  

 
. (41)

It can be seen from Eq. (41) that a positive correlation (C1,2 >0) between the eigenvalue

states reduces the uncertainty in the reactivity because common uncertainties tend to

cancel from the eigenvalue-difference. On the other hand, negative correlations increase

the uncertainty. The correlation coefficient also provides useful information whenever the

two distinct states correspond to different benchmark experiments. In this case, the

correlation coefficient provides a measure of similarity in the two experiments.6
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VI. APPLICATION TO COOLANT VOID REACTIVITY

The S/U methodology for eigenvalue-differences was validated for a 1D Wigner-

Sitz cylindrical model of an LWR pincell consisting of a 2.1% enriched UO2 fuel pellet at

900 K, with Zr cladding, and water coolant. State 1 corresponds to unvoided water

coolant at 600 K, while state 2 has the water voided to 0.1% of the initial density. All

other material concentrations and dimensions are held constant. The response

corresponds to the eigenvalue-difference for the two states, as defined in Eq. (8).

The TSUNAMI-1D sequence of SCALE, which is based on deterministic rather

than Monte Carlo calculations, was utilized in the validation studies to avoid statistical

variations in the perturbation results. This computational sequence (a) performs self-

shielding calculations for the unresolved and resolved resonance ranges using modified

versions of the BONAMI18 and NITAWL19 modules, respectively; (b) executes the 1D

discrete ordinates code XSDRNPM20 to compute forward and adjoint flux distributions

throughout the model; and (c) evaluates perturbation expressions using the SAMS11

module to obtain energy-dependent sensitivity coefficients—both explicit and implicit—

relating the multiplication factor to nuclear data variations of all nuclide-reaction pairs.

For each nuclide, the energy-dependent sensitivity profiles are also summed over all

energy groups and reaction types to obtain “nuclide sensitivities” relating a change in the

nuclide concentration to the change in the multiplication factor. TSUNAMI-1D was

executed twice—for the unvoided and voided states, respectively—to generate the k-

sensitivity coefficients. Another code reads the eigenvalue sensitivities for the two states
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and then evaluates Eq. (20) to obtain ρ-sensitivity coefficients for the eigenvalue-

difference.

A series of direct calculations was performed in which the input number densities

of 235U and 238U, respectively, were varied by ±2%. Table 1 shows the multiplication

factors and reactivities obtained for the various perturbations considered. Note that these

results reflect the impact of concentration changes throughout the entire calculation

sequence, i.e., not just in the discrete ordinates eigenvalue calculations but also in the

resolved and unresolved self-shielding procedures. Sensitivity coefficients relating the

235U and 238U concentration changes to the concomitant changes in the eigenvalues and

reactivity were computed from Table I results by using a central finite-difference

approximation. Although not exact, these “direct” estimates for the nuclide sensitivity

coefficients are accurate through the second order and can be assumed to be nearly the

correct value.

Table II compares the direct results with the nuclide sensitivities calculated from

the eigenvalue and reactivity perturbation expressions. It should be noted that in this

table, k-sensitivities rather than λ-sensitivities are specified (these have opposite signs)

and that the ρ-sensitivity coefficients are defined relative to the absolute value of the

reactivity, as discussed in section II.2. The perturbation theory results are provided both

with and without including the implicit effects of perturbations in self-shielding. It can be

seen that the nuclide sensitivity coefficients for the multiplication factor and reactivity

responses agree better with direct calculations whenever the implicit effects are

included—especially for the 238U atom density, where the implicit effects reduce the

magnitudes of k-sensitivities by 10–13% and of the ρ-sensitivity by 8%. The nuclide
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sensitivity coefficients with implicit effects all agree to within 0.1% of the direct

calculations. The excellent results obtained for this 1D pincell example provide some

confidence that the methodology can be used for realistic cases as well.

As an example of a more complex application, S/U calculations were performed

for a modified 3D model of the ACR-700 fresh fuel bundle. The computational model

used here has been altered from the actual, proprietary ACR-700 design, but most of the

sensitivities should be similar. Figure 1 shows the assumed fuel bundle model, consisting

of 43 low-enriched UO2 fuel pins and water coolant inside a ~10-cm-diameter pressure

tube, which is placed within a heavy water moderator. For these calculations, an infinite

array of fuel bundles such as the one shown in Fig. 1 is assumed within the moderator, so

a full core calculation is not required. This assumption is not required in general because

a 3D Monte Carlo code is used for the neutron transport computation.

The response considered in this case corresponds to the coolant void reactivity

(CVR) associated with voiding of the water coolant inside the pressure tube. In state 1,

the coolant inside the fuel bundle is at the reference full power thermal conditions with

no voiding; while the water density in state 2 is approximately 0.1% of the initial density,

i.e., 99.9% voided. All other material concentrations and dimensions are held constant.

The TSUNAMI-3D sequence was used for the CVR S/U analysis of the fuel

bundle. This computational sequence is identical to the TSUNAMI-1D sequence

described previously, except that the transport calculations are performed in 3D geometry

with the KENO-Va multigroup Monte Carlo code.21 The geometry in Fig. 1, with

reflected boundary conditions on the outer surfaces (including top and bottom), is the

actual KENO model. A 238-group cross-section library based on ENDF/B-V was used in
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the transport calculations. The eigenvalues of the two states were determined from the

Monte Carlo calculations to a statistical precision of better than 0.01%. For this assumed

model of the ACR-700, the CVR is computed to be −211 pcm, with a precision of

±10 pcm.

Table III shows a comparison of several nuclide sensitivity coefficients calculated

for the CVR and for the multiplication factors of the two states. It can be seen that the ρ-

sensitivities are often quite large, much greater than the corresponding k-sensitivities for

either the unvoided or voided states. For example, the ρ-sensitivity coefficient for

deuterium in the heavy water moderator is about 34.3, indicating that a change of 1% in

the moderator density could cause more than a 30% change in the CVR. The other CVR

sensitivities in Table III have magnitudes ranging from 2 to 7, whereas eigenvalue

sensitivities generally are observed to be less than unity for all types of data. An

interesting illustration of the difference between eigenvalue and reactivity sensitivities is

seen for the nuclide sensitivity of 235U . The CVR sensitivity to the 235U concentration is

about−5.0, while the k-sensitivity coefficients are positive for both unvoided and voided

states, with only a small difference in magnitude (~0.24 vs 0.23). This means that if the

235U concentration is uniformly increased in the bundle, the multiplication factors for

both states will increase; but the voiding reactivity decreases, because the multiplication

factor of the initial state increases more than that of the final state. It is interesting to note

that the ρ-sensitivity for 235U, as well as 238U, in this fuel bundle is quite different from

that found in the LWR pincell example. Like 235U , the 1H ρ-sensitivity also is a large

negative value (~ −2.4) because an increase of the hydrogen atom density in the unvoided
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state causes the initial multiplication factor to increase; but this has little impact on the

multiplication factor of the voided state, so the CVR decreases.

Table IV shows the CVR sensitivity coefficients for selected cross section data,

integrated over all energy. It is seen that the CVR is very sensitive to several types of

cross sections, including 235U capture and fission, 238U capture, 164Dy capture (a burnable

absorber material), 1H elastic and capture, and 2H elastic. These sensitivities, as well as

several others not shown, all have magnitudes greater than unity; therefore, the CVR

response depends much more strongly on uncertainties in nuclear data than do the

eigenvalue responses.

Figures 2 and 3 show energy-dependent sensitivity profiles of the 238U capture

data for the unvoided/voided multiplication factors and for the CVR response,

respectively. As expected, the 238U capture sensitivities for the multiplication factors in

both unvoided and voided states are negative and especially large in magnitude within

groups corresponding to the low-energy 238U s-wave resonances (at 6.6 eV, 21 eV, etc.)

and within the thermal energy range. However, the CVR sensitivity to this data is much

different since the self-shielding of the 238U capture cross section is significantly greater

in the voided versus unvoided states. The CVR sensitivity to the 238U capture data is

actually positive in the thermal range and around the peaks of the low-energy resonances,

even though the integrated sensitivity for these data has a value of about −8.4, as shown

in Table IV. It was verified that the area under the curve in Fig. 3 is, in fact, negative

mainly because of the negative sensitivities in the energy range above 100 eV. The wings

of the low-energy 238U resonances also tend to have negative sensitivities for the CVR

response.
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Figures 4 and 5 compare 235U fission sensitivities for the multiplication factor and

CVR responses, respectively. The multiplication factors are mainly sensitive to the

thermal energy range of this data, and the k-sensitivities are positive in all groups for both

states. As a result of loss of moderation in state 2, the CVR has a large negative

sensitivity to the 235U fission data in thermal range, while it has positive sensitivities to

the epithermal and fast fission data. Table IV shows that the integrated sensitivity for

235U fission is about −3.6.

Figures 6 and 7 show the CVR sensitivity to the 1H and 2H total cross sections. It

can be seen that the CVR has positive sensitivity to the 1H thermal data because of loss of

hydrogen absorption in the voided state, but it has large negative sensitivities within the

energy intervals of the 238U resonances where the loss of moderation decreases the

resonance escape probability. Table IV shows that the hydrogen elastic and absorption

data have integrated sensitivity values of about −17.3 and 15.0, respectively. Thus the net

sensitivity for these two competing effects is about −2.4, corresponding to the overall

nuclide sensitivity given in Table III for the hydrogen concentration. The sensitivity of

the CVR response to the deuterium total cross sections is very large and positive in the

thermal and epithermal ranges. If voiding of the water coolant increases the temperature

of the heavy water moderator, then the resulting decrease in the deuterium number

density could provide an additional source of negative reactivity for the CVR.

As discussed in section V, the energy-dependent sensitivity profiles for each

nuclide-reaction pair can be combined with nuclear data covariance information to

calculate the uncertainty in the response. In this work, we have utilized the library of 44

group covariance data that is distributed with the SCALE system.22 These data were
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processed from the evaluated uncertainty information in ENDF/B-V; but, unfortunately,

there is no covariance information available in this data set for several materials,

including deuterium and dysprosium. Thus the results presented here do not include all

contributions to the response uncertainty.

The estimated response uncertainties are given in Table V for the state 1 and 2

multiplication factors and for the CVR. Both eigenvalue responses have uncertainties of

about 0.8%, while the relative standard deviation of the reactivity response is nearly 50%.

This great difference in magnitudes is due to the fact that eigenvalue-difference responses

tend to have much larger sensitivities than eigenvalue responses, so the calculated CVR is

affected much more strongly by uncertainties in nuclear data. As discussed in section V,

the relative variance in eigenvalue-difference responses tends to be amplified for small

reactivities, compared with the relative uncertainties in the associated eigenvalues.

Table VI shows the fractional contributions of some important nuclear data to the

overall variance in the CVR response. These values depend on a combination of the data

uncertainty and the response sensitivity to the data; e.g., a large data uncertainty may not

have much contribution if the computed response is insensitive to the data. Based upon

available cross-section covariance data, the largest contribution to the CVR uncertainty is

found to be the 238U capture data, followed by H elastic, 235U capture, 235U fission.

However, the uncertainty analysis does not include the contribution of the deuterium

elastic cross section because no covariance data were available. This could be another

important contributor to the response uncertainty, since the CVR has the largest

sensitivity to this reaction.
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VI. SUMMARY

Sensitivity coefficients for eigenvalue-difference responses, such as the reactivity

change between two distinct states, can be derived from either eigenvalue perturbation

theory or GPT. Both expressions contain four functions that must be computed from

either regular or generalized forward and adjoint equations at the two states. However,

calculation of the generalized forward and generalized adjoint functions requires more

effort, since additional eigenvalue equations must be solved to obtain the fundamental

mode components. Furthermore, the reactivity sensitivity coefficients based on

eigenvalue perturbation theory can be easily evaluated using conventional sensitivity

analysis techniques such as those implemented in the SCALE code system. This allows

utilization of previously developed computation sequences such as TSUNAMI-1D and -

3D—based on 1D discrete ordinates and 3D Monte Carlo, respectively—to be applied to

eigenvalue-difference responses. Reactivity sensitivities computed by eigenvalue

perturbation theory were shown to agree well with direct calculations for an LWR pincell

case.

The uncertainty in eigenvalue-difference responses depends upon the variances in

the eigenvalues of both states, as well as a covariance term that accounts for correlations

in the calculations of the states. The relative uncertainty in a reactivity response may be

greatly amplified compared with the eigenvalue uncertainties whenever the reactivity

change is small. This results in large uncertainties in the calculated values for many

reactivity coefficients.
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S/U analysis was performed for the coolant void reactivity response in an ACR

fuel bundle. The calculations used Monte Carlo to model a fresh fuel bundle in voided

and unvoided states. It was found that many of the calculated data sensitivities for the

reactivity response are much greater than the corresponding eigenvalue sensitivities for

the two states. Uncertainty analysis gives a relative standard deviation in the coolant void

reactivity of about 50%, resulting from uncertainties in nuclear data.
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TABLE I.

Nuclide Perturbation Results for LWR Pincell in States 1 and 2

Perturbation
Multiplication
Factor, State 1

(k1)

Multiplication
Factor, State 2

(k2)

Reactivity ρ1→2
(1/k1 -1/k2)

Unperturbed* 1.123915 0.539069 −0.96530

+2% 235U 1.127959 0.543633 −0.95292

−2% 235U 1.119746 0.534471 −0.97795

+2% 238U 1.117206 0.535436 −0.97255

−2% 238U 1.130722 0.542825 −0.95782

*Reference number densities: 235U=4.8839E-4 ; 238U=2.2480E-2.
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TABLE II
Nuclide Sensitivity Coefficients for LWR Pincell

Sensitivity
Parameter*

Direct Finite
Diff Calc

Perturbation Theory
(no implicit)

Perturbation Theory
(with implicit)

Sk1,
235U 0.1827 0.1832 0.1826

Sk2,
235U 0.4249 0.4259 0.4249

Sρ, 
235U 0.6482 0.6509 0.6482

Sk1,
238U −0.3006 −0.3408 −0.3006

Sk2,
238U −0.3426 −0.3782 −0.3423

Sρ, 
238U −0.3813 −0.4129 −0.3809

*Sk ≡-Sλ  = sensitivity of multiplication factor response to atom density changes.
Sρ = sensitivity of reactivity response to atom density changes.
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Table III.
Nuclide Sensitivity Coefficients for ACR Fuel Bundle

Nuclide Sk1* Sk2* Sρ*

U-235 0.245
( ± 5.73E-6)

0.231
( ± 4.73E-6)

−5.015
( ± 1.70E-2)

U-238 −0.209
( ± 2.48E-6)

-0.228
( ± 3.52E-6)

−7.519
( ± 1.55E-2)

H-1 6.268E-03
( ± 2.48E-6)

−1.782E-05
( ± 6.45E-9)

−2.375
( ± 9.86E-4)

H-2 0.0999
( ± 2.11E-6)

0.190
( ± 3.43E-6)

34.317
( ± 1.08E-2)

Dy-164 −0.0145
( ± 4.91E-7)

−0.0215
( ± 6.84E-7)

−2.662
( ± 1.33E-3)

*Sk ≡-Sλ  = sensitivity of multiplication factor response to atom density changes.
Sρ = sensitivity of CVR response to atom density changes.
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Table IV
Integrated Cross Section Sensitivity Coefficients for CVR

Nuclide Sρ,α*
α= elastic

Sρ,α*
α= capture

Sρ,α*
α= fission

235U −0.0315
( ± 8.09E-06 )

−1.386
( ± 8.39E-03 )

−3.590
( ± 2.54E-02)

238U −0.628
( ± 5.22E-04)

−8.387
( ± 1.76E-02)

1.649
( ± 1.88E-03 )

1H −17.287
( ± 2.39E-03)

14.915
( ± 2.04E-03 ) 0.0

2H 34.159
( ± 1.08E-02 )

0.0437
( ± 1.05E-04 ) 0.0

Dy-164 −0.0151
( ± 3.85E-06 )

−2.647
( ± 1.33E-03 ) 0.0

*Sρ = sensitivity of CVR response to indicted nuclear data.
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Table V
Response Uncertainties Due to Available Nuclear Data Covariances

Response Relative Standard
Deviation (%)

Multiplication factor for state 1 0.80

Multiplication factor for state 2 0.84
Coolant void reactivity (CVR) 49.8
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Table VI
Major Data Contributors to CVR Uncertainty

Data % Contribution to
Reactivity Variance

238U n, gamma 4.55E+01
1H elastic 1.94E+01

235U n, gamma 1.86E+01
235U fission 8.15E+00
235U nubar 3.85E+00

1H n, gamma 3.23E+00
238U fission 4.88E-01

238U n,n' 3.55E-01
238U nubar 2.41E-01

235U chi 1.31E-01
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 1. Modified model for fuel bundle of advanced CANDU reactor.
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 2. 238U Capture Sensitivity Profiles for Multiplication Factors in Unvoided and
Voided Fuel Bundle
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 3. 238U Capture Sensitivity Profiles for CVR
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 4. 235U Fission Sensitivity Profiles for Multiplication Factors
in Unvoided and Voided Fuel Bundle
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 5. 235U Fission Sensitivity Profiles for CVR
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 6. Hydrogen Total Cross Section Sensitivity Profiles for CVR
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Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses

Mark L. Williams

Fig. 7. Deuterium Total Cross Section Sensitivity Profiles for CVR
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FIGURE CAPTIONS

Fig. 1. Modified model for fuel bundle of advanced CANDU reactor.

Fig. 2. 238U capture sensitivity profiles for multiplication factors in unvoided and
voided fuel bundle.

Fig. 3. 238U capture sensitivity profiles for CVR.

Fig. 4. 235U fission sensitivity profiles for multiplication factors in unvoided and
voided fuel bundle.

Fig. 5. 235U fission sensitivity profiles for CVR.

Fig. 6. Hydrogen total cross-section sensitivity profiles for CVR.

Fig. 7. Deuterium total cross-section sensitivity profiles for CVR.


