
 

 

Model Derivation 

Development of Three-Dimensional Model 

Dynamic three-dimensional finite difference computer models were developed for each 
considered wall assembly.  A heat-conduction, finite-difference computer code called 
HEATING 7.2 [Childs, 1993] was used for this analysis.  HEATING 7.2 generates overall 
resistances, capacitances, response factors and structure factors.  To generate a 3-D 
model of a wall assembly means to describe its geometry and material properties in the 
frames of HEATING 7.2.  The node density was varied to provide an accurate result in a 
reasonable run-time.  A description of HEATING 7.2 is included in Appendix D. 

Response factors for the three-dimensional models were calculated with the help of the 
HEATING 7.2.  The model assumes boundary conditions of the first kind.  All envelope 
details were analyzed in steady-state and dynamic conditions represented by a unit 
triangular temperature excitation. The complex assemblies were thus simulated by the 
dynamic conditions represented by:  

Time: 0 hours  Temperature: 0.0 

Time: 1.0 hours Temperature: 1.0 

Time: 2.0 hours Temperature: 0.0   

Linear course between time 0 and 1, and also between 1 and 2 is assumed. 

Given the overall resistance value and the normal response factors generated from 
HEATING 7.2, one may calculate dimensionless response factors.  Dimensionless 
response factors represent ratios of the wall responses to unit triangular temperature 
excitations, to the steady state heat flux, due to the unit boundary temperature 
difference, equal to 1/R. 

For plane walls, response factors with sufficiently high indices, above some M, satisfy 
the condition: 
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where τ1  is the first, of largest value, time constant of the wall. Response factors for 
three-dimensional assemblies, in general, have similar properties; however their ratios 
show small variations even for large indices, where they drop several orders of 
magnitude, as compared with the first ones. Transfer functions of the first order, defined 
as: 

 

0
'

00
'
0 , YYXX ==                                                                        (3) 

1;, 1
'

1
' ≥−=−= −− nYYYXXX nnnnnn αα                            (4) 

 

were calculated with α assumed as the average value of ratios of the response factors 
Xn and Yn with highest indices. The quantity τ1 was calculated as –1/ln(α), to compare 
with the one-dimensional, equivalent wall model. 

The response factors are used as input data to determine the z-transfer function 
coefficients from the primarily infinite set of linear equations.  The conduction z-transfer 
function coefficients are determined by solving the set of linear equations, which 
constitute relationships with the response factors: 
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and compatibility equations: 
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see Equations A13, A14, A15.    

Conditions imposed by the structure factors on the z-transfer function coefficients bn, cn, 
dn Equations A35, A36 [Kossecka, 1998], were also included as subsidiary equations:  
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For each case, different kinds of cut-off were considered and minimization procedures 
were applied to satisfy, as best as possible, compatibility conditions. In general, 
minimization methods deliver many solutions; thus a good mathematical solver and 
knowledge of the heat transfer theory is necessary to select the appropriate solution. 
The z-transfer coefficients were calculated with the help of a mathematical computer tool 
(MathCAD).  

Development of Equivalent Wall Model 

An alternative way to perform whole building energy simulations is to employ a one-
dimensional model.  In the equivalent wall method, developed by Kossecka and Kosny 
[1996, 1997], a multi-layer structure is created with the same resistance, capacity and 
structure factors, as in the three-dimensional wall assembly.   

The equivalent wall method is incorporated into a specialized version of HEATING 7.2, 
called EQV_WALL.  This computer tool aids in the modeling of dynamic thermal 
performance of complex wall systems with significant thermal mass, and is utilized for 
these simulations. 

The equivalent wall method uses, as its mathematical basis, conditions imposed on the 
response factors and z-transfer function coefficients by the thermal structure factors.  
Thermal structure factors are dimensionless quantities representing the fractions of heat 
stored in the wall volume, in transition between two different states of steady heat flow, 
which are transferred across each wall surface, see (A19) and (A20).  Relationships of 
the structure factors with other dynamic thermal characteristics of walls are presented 
below. 

Structure factors, ϕii  and  ϕie , for a composite wall element, adiabatically cut off from the 
surroundings, are given by: 
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where C is the total thermal capacity of the wall element of volume V: 
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and θ is the dimensionless temperature for the problem of steady-state heat transfer, for 
ambient or surface temperatures Ti = 0 and Te = 1. 

Structure factors ϕii and ϕie for a wall of thickness L, composed of n plane homogeneous 
layers, numbered from 1 to n with layer 1 at the interior surface, are given as follows: 
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where R is the total wall’s thermal resistance per unit cross section area, Rm and Cm 
denote the thermal resistance and capacity of the m-th layer, whereas  Ro-m and Rm-L 
denote the resistances for heat transfer from surfaces of the m-th layer to the interior 
and exterior surface of the wall, respectively.  Layers with Cm=0 represent contact 
resistances.  If the surface film resistances, Ri and Re are included, then Ro-m and Rm-L 

are replaced by Ri-m and Rm-e; resistances for heat transfer from surfaces of the m-th 
layer to inner and outer surroundings, respectively.  

Conditions imposed by the structure factors on the response factors are as follows 
[Kossecka and Kosny 1996, 1997]: 
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Thermal structure factors are calculated using (9) and (10), or (14) and (15), using the 
response factors generated by the three-dimensional model as ‘inputs’. 

There are several ways the equivalent wall technique may generate a simple one-
dimensional multi-layer structure with the same thermal properties and dynamic behavior 
as the actual wall.  The first step is to assume some number of ‘equivalent’ layers for the 
wall structure.  In this study, three-layer equivalent wall models were developed for all 
wall assemblies considered.  It was found that a three-layer structure produced the best 
results for all the wall assemblies considered.  A simple way to solve for equivalent layer 



 

 

properties is to first generate, randomly or with some logic, a set of resistances Rn (or 
capacitances Cn) for each layer, then seek the capacitances Cn (or resistances Rn) to 
satisfy Equations (12) and (13). The thermal structure factors and overall R-value must 
match those for the 3-D wall assembly.  Thermo-physical properties of the layers may 
then be established, if necessary, to match Rn and Cn values and total thickness of the 
wall.  A detailed description of the equivalent wall procedure is included in Appendix B.   

Response factors are calculated for the equivalent wall to provide a clear physical 
interpretation and a comparison with the three-dimensional model response factors.  
Response factors illustrate better the similarities and differences in dynamic thermal 
response than does comparison of z-transfer function coefficients.   

Given that the equivalent wall is a one-dimensional model, response factors and z-
transfer function coefficients are calculated using the standard, Laplace transform 
method,  [Kusuda, Stephenson and Mitalas, Clarke].  Note that the method of obtaining 
z-transfer function coefficients described in the development of the three-dimensional 
model may also be employed for the one-dimensional equivalent wall.  However, this 
would be disadvantageous since its mathematical basis constitutes a series of linear 
equations, which must be solved using minimization procedures and assumes some 
level of heat transfer knowledge on behalf of the user.   

The development of the equivalent wall model is an iterative procedure.  By adjusting the 
number and capacitances of equivalent wall layers, the equivalent wall model can 
generate results that more closely resemble those of the 3-D model. 

Therefore, the relationship between the thermal structure factors and response factors 
play a pivotal role in the development of the equivalent wall model. The thermal structure 
factors, together with total thermal resistance R and capacity C, determine the dynamic 
thermal properties of a wall element – through the conditions they impose on the 
response factors.  Those conditions however, do not determine the response factors in a 
unique way, but rather play the role of constraints.  The equivalent wall model is not 
unique; however different equivalent walls have, in general, very similar dynamic thermal 
properties. One may then examine generated models to choose the best one. 
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