
 

 

APPENDIX A.  

RELATIONSHIPS BETWEEN DYNAMIC THERMAL 
CHARACTERISTICS OF COMPOSITE WALL ASSEMBLIES USED 

TO DETERMINE CONDUCTION TRANSFER FUNCTION 
COEFFICIENTS 

Three-dimensional Model 

Relationship between response factors and z-transfer function coefficients 

Three-dimensional z-transfer function coefficients may be used effectively for the 
dynamic simulations of the heating and cooling loads if the whole building simulation 
program enables this type of wall data input.  Method of derivation of the conduction z-
transfer function coefficients from the response factors for three-dimensional wall 
assemblies is presented.   

It is assumed that the response factors, which represent surface heat flow due to 
triangular temperature excitations, at discrete time instants, may be calculated with the 
help of a computer code to simulate three-dimensional heat conduction. They are used 
as the “input data”, to determine z-transfer function coefficients from the set of linear 
equations, which includes relationships with the response factors and compatibility 
conditions. This infinite set of equations is to be solved applying cut-off and using 
minimization procedures. 

In terms of the response factors, heat flux across the interior surface of a wall element at 
time instant nδ, Qi,nδ, can be represented as follows [Kusuda 1969, Clarke 1985]: 
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where R is the resistance of the wall, {Ti,nδ} and  {Te,nδ} are sequences of the ambient 
temperatures values, and {Xn} and {Yn} are sequences of the response factors. As far as 
three-dimensional problems are considered, all quantities are to be understood as 
average values over the surface of a wall element adiabatically cut from the 
surroundings. 

The z-transform of the interior heat flux, Z{Qi} is related to the z-transforms of the interior 
and exterior temperature, Z{Ti} and Z{Te}, by the following equation [Jury 1964]: 
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where Z{X} and Z{Y} are the z-transforms of the sequences of the response factors Xn 
and Yn.: 
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The condition, response factors Xn  and Yn  should satisfy: 
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is equivalent to the following condition for the z-transforms Z{X} and Z{Y}: 
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Let now Z{X } and Z{Y} be given as the quotients: 
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where  
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bn  and cn  are the normalized conduction z-transfer function coefficients, which 
correspond to the coefficients bn, cn  from the ASHRAE Handbook  Fundamentals [1989, 
1997] multiplied by R. Mb, Mc and Md represent numbers of coefficients significantly 
different from zero. 

Equation (A2) can be rewritten in the form: 
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Equation (A1) for Qi,nδ , for n exceeding Mb, Mc and Md, assuming d0 = 1, is now replaced 
by [Stephenson and Mitalas, 1971]: 
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Relationships (A6) for the z-transforms, rewritten in the form: 
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are equivalent to the convolution type relationships between the response factors Yn, Xn 
and conduction transfer function coefficients bn, cn, dn: 
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The conditions (A5), for Z{Y} and Z{X} now have the form: 
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which gives the following conditions for the z-transfer function coefficients: 
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Determining the z-transfer function coefficients from the response factors 

On the basis of Equations (A11) and (A13) one may try to determine z-transfer function 
coefficients from the response factors Yn, Xn. This is the most straightforward method; z-
transfer function obtained in this way are expected to “exactly” reproduce the output for 
any input function composed of straight-line segments, joining the coordinates that 
correspond to its z-transform coefficients. 

Assuming that values of the coefficients with indices above some n are negligibly small 
and d0 = 1, we obtain the following set of linear equations: 
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00 YRb =                                                                                                                    (A14.2) 

( )1011 dYYRb +=                                                                                                        (A14.3) 

( )201122 dYdYYRb ++=                                                                                             (A14.4) 



 

 

( )30211233 dYdYdYYRb +++=                                                                                   (A14.5) 

........................................................................... 

( )nnnnnn dYdYdYdYYRb 0332211 .....+++++= −−−                                                         (A14.n) 
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00 XRc =                                                                                                                  (A15.2) 

( )1011 dXXRc +=                                                                                                     (A15.3) 

( )201122 dXdXXRc ++=                                                                                         (A15.4) 

( )30211233 dXdXdXXRc +++=                                                                             (A15.5) 

............................................................................. 

( )nnnnnn dXdXdXdXXRc 0332211 .....+++++= −−−                                                  (A15.n) 

( )nnnnn dXdXdXdXXR 1322111 .....0 +++++= −−+                                                (A15.n+1) 

( )nnnnn dXdXdXdXXR 2312112 .....0 +++++= −++                                               (A15.n+2) 
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When the structure factors are calculated together with the resistance and the response 
factors, one may use conditions imposed by the structure factors on the z-transfer 
function coefficients, see Equations (A31) and (A32) below, as subsidiary equations. 

One may use more equations than the number of unknowns and apply minimizing 
procedures to get the solution. Maximum indices Mb, Mc, Md, of the coefficients bn, cn, dn, 
depend on the specific dynamic thermal properties of given wall assembly. In general, 
total number of the z-transfer function coefficients increases with the resistance and 



 

 

mass of the wall; however it is not the rule. Trying different kinds of the cut-off one 
should control the following quantity: 
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Er is the relative error of the heat flux in steady state conditions, simulated using the z-
transfer function method. 

Solving back equations (A11) for Yn, Xn , with d0 = 1, gives the recurrence formulae, 
which may be used to additionally verify the solution obtained for the z-transfer function 
coefficients: 
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Equivalent wall model 

This discussion presents the idea of the “thermally equivalent wall”; a plane multi-layer 
structure with dynamic characteristics similar to those of a complex structure in which 
three-dimensional heat flow occurs.  The effect of internal thermal structure on the 
dynamic characteristics of walls is analyzed below.  It introduces the idea of structure 
factors and shows the conditions they impose on response factors.  

Relationships between response factors and thermal structure factors 

Relationships between the structural and dynamic thermal characteristics of building 
walls are analyzed below to answer the question how should the response factors (or 
transfer function coefficients) be modified to account for the effects of thermal bridges in 
computerized whole building energy calculations  

The simplest method is to calculate the overall resistance of a wall with imperfections - 
solving the steady state heat transfer problem - and multiply response factors by the 
resulting correction factor. This approach is suitable for light walls for which storage 
effects are insignificant. 



 

 

However, imperfections in plane walls do not only change the resistance of the walls but 
also modify their dynamic properties, which may be represented by response factors in 
computer whole building energy simulations. To account for this effect, the general 
conditions between structural and dynamic characteristics for walls must be noted. Such 
conditions follow from the asymptotic formulae for the heat flow across the surfaces of 
the separated wall element due to temperature difference on its two sides. 

Consider the heat flow through an element of a building envelope of complex material 
and geometrical structure.  The element is embedded in a plane wall, homogeneous in 
every cross section and parallel to the wall surfaces. It is assumed that the 
thermophysical properties of the structure—thermal conductivity k, density ρ and specific 
heat c—are constant in time. The element, together with its nearest neighborhood, is 
represented by the region D. Region D is bounded by the inner surface facing room 
temperature Ti; the outer surface facing environmental temperature Te; and the adiabatic 
surface of the cut which separates it from those parts of the wall where the heat flow can 
be considered as one-dimensional. 

Asymptotic expressions for total heat flow have been developed, based on the following 
set of conditions: 

! across the internal and external surface of a wall element 

! time interval [0, t]  

! sufficiently large t 

!
 ambient temperatures held constant at Ti and Te 

! initial conditions zero 

The equations have the following simple form [Kossecka 1992, 1996, 1998, Kossecka 
and Kosny 1996, 1997]: 
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where t’ is the integration variable, t denotes time and R and C are the total thermal 
resistance and capacity, respectively, of the wall element of volume V, adiabatically cut 
from the surroundings: 



 

 

C c dvp
V

= ∫ ρ                                                                       (A21) 

whereas ϕii, ϕie and ϕee are given by: 
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where θ is the dimensionless temperature for the problem of steady-state heat transfer 
through a wall, for ambient temperatures Ti = 0 and Te = 1. 

In other words, the asymptotic expression for steady-state heat flow across the wall 
surface in time interval [0, t] due to a step change in excitation temperature is the sum of 
the term proportional to t, and the capacity term, proportional to the wall’s capacity. 
Capacity terms corresponding to four possible heat transfer modes (combinations of the 
surface of excitation and the surface of response) are represented here by the products 
CϕiiTi, CϕieTe, CϕieTi and CϕeeTe. 

Dimensionless quantities ϕii, ϕie and ϕee are called the “thermal structure factors” for a 
wall or a wall detail. For a plane wall they are determined directly by its structure, 
represented by the thermal capacity and resistance distribution across its thickness. In 
three-dimensional case, to calculate them effectively, one has to solve the steady state 
heat transfer problem.   

The following identity is satisfied: 

12 =++ eeieii ϕϕϕ                                                                       (A25) 

Structure factors ϕii, ϕie, and ϕee for a wall composed of n plane homogeneous layers, 
numbered from 1 to n with layer 1 at the interior surface, are given as follows: 
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where: Rm and Cm denote the thermal resistance and capacity of the m-th layer 
respectively, whereas   Ri-m and Rm-e denote the resistance for heat transfer from 
surfaces of the m-th layer to inner and outer surroundings, respectively. Structure factors 
ϕii and ϕee take values from the range (0, 1), whereas ϕie from the range (0, 1/4); for 2-
layer wall from the range (0, 3/16).  For a homogeneous wall, contact resistances being 
neglected, ϕii = ϕee =1/3, ϕie = 1/6. 

Products Cϕii, Cϕie, Cϕee, are equivalent to the thermal mass factors, introduced by 
Anderson [1989]; see also ISO/DIS 9869.2. 1991. 

Correspondence with the dynamic thermal characteristics of walls one deals with using 
Laplace transform method is as follows [Kossecka 1998]: 
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where A(s), B(s) and D(s) are elements of the s-transfer matrix for a multi-layer wall. 

The s-transfer function 1/B may be represented as [Brown and Stephenson 1993]: 
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where τn are the time constants of the wall, i.e. the poles of 1/B are at s = -1/τn. 
Differentiating (A30) gives: 
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Compatibility of Equations (A29) and (A31) gives the condition: 
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which means that walls of the same value of the product RCϕie have the same sum of 
time constants. For multi-layer walls, in general, sum of the first five time constants is 
about 0.9 of the product R⋅C⋅ϕie whereas first time constant τ1 is between 0.5 to 0.9 of 
this quantity. 

Compatibility of the asymptotic formula (A19) with the expressions for the heat flow, 
given in terms of the response factors, yields the following constraints conditions [see 
Kossecka 1992, 1996, 1998, Kossecka and Kosny 1996, 1997]: 
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Conditions analogous to (A33), (A34), for the dimensionless z-transfer function 
coefficients bn, cn, dn, have the form [Kossecka 1998]: 
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Response factors Yn, with n ≥ 1, describe the storage effects - heat fluxes after the time 
of duration of the triangular temperature impulse. They are all positive. High value of the 
structure factor ϕie indicates that response factors with number n ≥ 1, are comparatively 
large; on the contrary, small value of this structure factor indicates that they are 
comparatively small. However equations (A33), (A34) must be satisfied simultaneously 
with (A4), which states that the sum of all response factors must be equal to 1. Therefore 
the larger are the values of Yn for n ≥ 1, the smaller is the value Y0 and vice versa. 
Taking into account that Yn should be relatively smooth functions of the number n, one 
can expect that, for given C, response factors corresponding to small values of structure 
factors decay relatively quickly whereas those corresponding to large values of structure 
factors decay relatively slowly. Constraint condition (A32), for the time constants τn, 
indicates the same. 



 

 

Structure factors for multilayer walls depend on the arrangement of wall materials. This 
effect may be demonstrated using the simple example of walls of the same resistance 
and capacity, composed of different configurations of concrete and insulation (Kossecka 
and Kosny 1998, 2001). Walls 1 through 6 are depicted in Figure A1. Their structure 
factors are collected in Table A1. The main part of each wall is a composition of 
heavyweight concrete layers, of 6 in. total thickness, and insulation layers, of 4 in. total 
thickness. The interior layer is ½ in. thick gypsum plaster; the exterior layer is ¾ in. thick 
stucco. 
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(4) (5) (6)

concrete insulation
 

 
Figure A1 Walls of different structure composed of concrete and insulation 

 
 
Thermophysical properties of the wall materials are as follows: 
! Heavyweight concrete: k = 10 Btu-in/h ft2 0F, ρ = 140 lb/ft3, cp = 0.2 Btu/lb 0F; 
! Insulation: k = 0.25 Btu-in/h ft2 0F, ρ = 1 lb/ft3, cp = 0.29 Btu/lb 0F; 
! Gypsum board: k = 1.11Btu-in/h ft2 0F, ρ = 50 lb/ft3, cp = 0.26 Btu/lb 0F; and 
! Stucco: k = 5 Btu-in/h ft2 0F, ρ = 116 lb/ft3, cp = 0.2 Btu/lb 0F. 

 
Other properties of the walls are as follows: 
! surface film resistances Ri = 0.69 ft2 0F h/Btu, and Re = 0.33 ft2 0F h/Btu; 
! total thermal resistance RT = 18.22 h ft2 0F/Btu; 
! overall heat transfer coefficient U = 0.055 Btu/h ft2 0F; 
! wall thermal capacity C = 16.15 Btu/ft2 0F; and 
! time constant RT⋅C = 293.14 h. 



 

 

 
Structure factors ϕii, ϕie and ϕee for walls 1 through 6 are collected in Table A1. The 
maximum ϕii is attained for wall 3 (all concrete inside) and minimum for wall 4 (all 
insulation inside); ϕie attains it’s maximum for wall 6 (symmetric insulation) and minimum 
for wall 4. Last columns in Table A1 present values of the product RTCϕie and of the first 
time constant τ1 for each wall. Dimensionless response factors RT⋅Yn for walls 1 through 
6 are represented in Figure A2. Influence of the structure factor ϕie on the character of 
variability of Yn with n, is observed. 
 
 
 
 

TABLE A1 
Structure Factors and First Time Constant for Walls with Cores Composed of 

Heavyweight Concrete and Insulation, Shown in Figure A1 
 

Wall 
No. 

Layers 
Thickness (in.) 

ϕϕϕϕii ϕϕϕϕie ϕϕϕϕee RTCϕϕϕϕie 
(h) 

ττττ1 
(h) 

Gypsum - Heavyweight Concrete - Insulation - Heavyweight Concrete – Stucco 

1 ½ - 3 - 4 - 3 – ¾ 0.408 0.048 0.496 14.02 8.47 

2 ½- 4 - 4 - 2 - ¾ 0.530 0.053 0.363 15.57 11.39 

3 ½- 6 - 4 - 0 – ¾ 0.770 0.068 0.094 19.92 17.61 

Gypsum - Insulation - Heavyweight Concrete - Insulation – Stucco 

4 ½- 4 - 6 - 0 – ¾ 0.034 0.040 0.885 11.80 9.58 

5 ½- 1 - 6 - 3 – ¾ 0.460 0.187 0.167 54.76 48.66 

6 ½- 2 - 6 - 2 – ¾ 0.234 0.222 0.322 65.02 62.48 
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Figure A2  Dimensionless response factors  RT⋅Yn  for walls 1 through 6 

 
One can say thus, that thermal structure factors, together with total thermal resistance R 
and capacity C, determine the dynamic thermal properties of a wall element - through 
the conditions they impose on response factors. Those conditions however do not 
determine the response factors in a unique way, but rather play the role of constraints. 
Nevertheless one may expect that walls with the same total thermal resistance, capacity 
and structure factors, have also similar dynamic characteristics - response factors - even 
if they are quite different in details. 

Relationships between structure factors and response factors, and also z-transfer 
function coefficients, have the same form for plane and composite walls. This analogy 
constitutes the basis of the notion of the “thermally equivalent wall”: the plane wall of the 
same dynamic properties as a complex structure, which may be used as its substitute in 
the whole building thermal modeling. 

 


