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Abstract: This study analyzes the effect of internal thermal structure on the dynamic 
characteristics of walls. It introduces the idea of structure factors and shows the conditions they 
impose on response factors. Simple examples of multilayer walls, representing different types of 
thermal resistance and capacity distribution, are analyzed to illustrate the general relations 
between structure factors and response factors. This study presents the idea of the “thermally 
equivalent wall,” a plane multilayer structure with dynamic characteristics similar to those of a 
complex structure in which three-dimensional heat flow occurs. 
 
1. RELATIONSHIPS BETWEEN RESPONSE FACTORS 
AND THERMAL STRUCTURE FACTORS FOR WALLS 
 The reason for studying relationships between the structural and dynamic thermal 
characteristics of building walls was the following problem: How should the response factors (or 
transfer function coefficients) for the plane walls used in computerized energy calculations be 
modified to account for the effects of thermal bridges. 
 The simplest method, of course, is simply to calculate the overall resistance of a wall with 
imperfections—solving the steady state heat transfer problem—and multiply response factors by 
the resulting correction factor. This approach is suitable for light walls for which storage effects 
are insignificant. However, calculating response factors separately for a variety of wall elements 
with thermal bridges and then including them in existing programs would be troublesome. A 
method is needed that is simple but sufficiently accurate. 
 Imperfections in plane walls not only change the resistance of the walls but also modify  
their dynamic properties, which in simulations may be represented by response factors. To 
account for this effect, the general conditions between structural and dynamic characteristics for 
walls must be noted. Such conditions follow from the asymptotic formulae for the heat flow 
across the surfaces of the separated wall element due to temperature difference on its two sides. 
 Consider the heat flow through an element of a building envelope of complex material 
and geometrical structure, embedded in a plane wall, homogeneous in every cross section, 
parallel to the wall surfaces. It is assumed that the thermophysical properties of the structure—
thermal conductivity k, density ρ and specific heat c—are constant in time. The element, together 
with its nearest neighborhood, is represented by the region D. Region D is bounded by the inner 
surface facing room temperature T; the outer surface facing environmental temperature T; and the 



 

 

adiabatic surface of the cut which separates it from those parts of the wall where the heat flow 
can be considered as one-dimensional. 
 Let θ(r) be the so-called reduced temperature for the steady-state heat conduction 
problem in D, that is, the dimensionless solution of the steady-state heat conduction equation for 
the ambient temperatures Ti = 0 and Te = 1. For a plane wall, the role of function θ is played by 
the function Ri–x/RT [1, 2, 3, and 4], where RT is the total resistance for heat transmission through 
a wall and Ri–x is the resistance from the point x in a wall to the internal environment. 
 For Ti and Te constant for time t > 0 and zero initial conditions, the asymptotic 
expressions for the total heat flow across the inner and outer surface in the direction of the 
outside normal, Qni and Qne, are as follows: 
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where RT is the total thermal resistance of the element calculated for the steady state heat flow, C 
is the total thermal capacity. The quantities ϕii, ϕee, and ϕie are given by 
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 The dimensionless quantities  ϕii, ϕie, and ϕee , together with total resistance RT and 
capacity C, constitute the basic thermal characteristics of the specific wall element, which can be 
determined experimentally in the heat transfer processes with steady initial and final states of 
heat flow [1, 5]. These characteristics are called the thermal structure factors. In a plane wall, 
they depend directly on the wall's thermal structure, determined by the capacity and resistance 
profiles along its thickness. For an element in which three-dimensional heat flow occurs, this 
dependence is indirect, through the reduced temperature distribution. To calculate thermal 
structure factors effectively, as well as total resistance, the steady state heat transfer problem 
must be solved. 
 General rules concerning the magnitudes of the structure factors may be deduced 
immediately from the form of the integral expressions (3) and (4). Bear in mind that generally, 
given a steady state of heat flow through an element composed of different materials, significant 
temperature slope is observed in regions of small conductivity. In regions of high conductivity, 
temperature is rather stable. 
 The quantity ϕii is comparatively large if most of the thermal mass is located near the 
interior surface of an element and most of the resistance belongs to the outer part located near the 
exterior surface; the opposite holds for ϕee. The upper limit of ϕii and  ϕee is 1, the lower limit is 
0. For elements with internal symmetry planes, ϕii = ϕee. The quantity ϕie is given as the integral 
over the volume of an element of the expression θ(1-θ) multiplied by ρc/C. θ(1-θ) attains its 
maximum of 1/4 at θ = 1/2. Therefore, ϕie attains its maximum, equal to 1/4, for the case of “the 
whole thermal mass of negligible resistance in the center” and “the whole resistance distributed 
symmetrically on both sides of it.” For a homogeneous wall, ϕii=ϕee=1/3, ϕie=1/6. 



 

 

 Structure factors of multilayer walls are affected by the differentiation of the thermal 
parameters of individual layers and their arrangement. This can be illustrated by a wall 
constructed in six different ways of two layers of heavyweight concrete (k = 1.73 W/mK, 
ρ = 2240 kg/m3, c= 0.838 kJ/kgK) and  two layers of insulation (k = 0.043 W/mK,  ρ = 91 kg/m3, 
c = 0.838 kJ/kgK) of the same thickness (Fig. 1).The structure factors for such a wall are shown 
in Table 1. The results for the homogeneous wall are added for comparison. 
 In computer simulations of energy usage in various building designs, heat flow rates 
across wall surfaces are modeled using the response factors. A response factor with the number m 
represents the response of a linear system to the unit triangular temperature pulse with the base 
width 2∆, at the discrete time moment m∆. 
 Let Hii(m∆), Hee(m∆) and  Hie(m∆) denote the normalized response factors corresponding 
to the three different heat transfer modes. The heat flow rates ( )&Q nni ∆ and ( )&Q nne ∆  across the 
internal and external surfaces of the element in the directions of the outside normals, as functions 
of the room and environmental temperature history, are represented in terms of the response 
factors as follows: 
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 For the asymptotic compatibility of Eq. (5) and Eq. (6) with the steady state heat flow 
solution, response factors must satisfy the condition 
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 Another set of conditions, derived in Eqs. (1) and (2), follows from the compatibility of 
(5) and (6) with the asymptotic formulae (1) and (2): 
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 Equations (8) and (9) represent the relationships between the dimensionless structural and 
dynamic thermal characteristics of the wall: ϕii, ϕie, and ϕee, the ratio of the time interval ∆ and 
time constant RTC, and the dimensionless normalized response factors Hii(m∆), Hee(m∆), and 
Hie(m∆). 
 The conclusions that may be derived immediately from Eqs. (8) and (9) concerning the 
effect of structure factors on response factors are the following [1, 5]. Response factors H(m∆), 
with m ≥ 1, describe the storage effects—heat fluxes after the duration of the triangular 
temperature impulse. A large value for the structure factor, corresponding to a given heat flux 
response mode, indicates that response factors with the number m ≥ 1 are comparatively large; a 
small value for the structure factor indicates that they are comparatively small. However, Eqs. (8) 



 

 

and (9) must be satisfied simultaneously with Eq. (7), which states that the sum of all response 
factors must be equal to 1. Therefore, the larger the values of H(m∆) for m ≥ 1, the smaller the 
value of H(0), and vice versa. Taking into account that H(m∆) should be relatively smooth 
functions of the number m, response factors corresponding to small values of structure factors 
can be expected to decay relatively quickly, whereas those corresponding to large values of 
structure factors can be expected to decay relatively slowly. 
 For exterior building walls, the values of ϕie, which affect their thermal stability with re to 
ambgardient temperature variations, are most important. 
 
Figure 1.  Different types of four-layer walls composed of concrete and insulation 

(1) (2) (3)

(4) (5) (6)

concrete insulation  
 

Table 1.  Thermal structure factors for different types of four-layer walls represented in Fig.1 

Wall ϕϕϕϕie ϕϕϕϕii ϕϕϕϕee 

1 0,018 0,950 0,014 

2 0,018 0.014 0,950 

3 0,247 0,253 0,253 

4 0,012 0,488 0,488 

5 0,130 0,605 0,136 

6 0,130 0,136 0,605 

homog. 0,167 0,333 0,333 
 
 To demonstrate the effect of structure on the dynamic properties of a plane wall, 
normalized response factors Hie(n∆) were calculated for a set of symmetric three-layer walls with 
thicknesses in the ratio 1:2:1; with the same resistance R, capacity C, and thermal diffusivity 
common to all layers, but with a different ratio of resistance and capacity between the inner and 
outer layers (Fig.2). Time constant RC = 50 h, ∆=1h. The values of structure factor ϕie, 
decrement factor df, and time lag τ of the heat flux for harmonic oscillations in a 24 h time period 
are collected in Table 2. (The quantity df is defined as the ratio of the amplitudes of the heat flux 
harmonic and quasistationary oscillations). 
 The plots of response factors in Figure 2 clearly illustrate that structure factors have an 
essential influence on the dynamic thermal behavior of a wall. Walls characterized by small 



 

 

values of the structure factor ϕie transfer thermal responses comparatively quickly, whereas those 
with large ϕie values delay thermal responses. The response (in the form of the heat flux at the 
surface) to a thermal impulse at the opposite surface is comparatively large and increases and 
disappears comparatively quickly in the case of a wall with ϕie close to zero. In the case of a wall 
with ϕie close to the maximum possible value of 1/4, the response is smaller and decreases 
slowly. However, it increases more quickly for this case than for a homogeneous wall. At the 
same time, the damping effects of the harmonic heat flux oscillations increase with ϕie (however, 
the time lag τ has a maximum below ϕie=1/4). 
 
Table 2.  Decrement factors 
 and time lags for symmetric 
 three-layer walls of 
different structure factors 
ϕie; RC=50 h 
 

ϕϕϕϕie df ττττ [h] 

0.011 0.998 0.530 

0.040 0.972 1.989 

0.110 0.777 5.129 

0.167 0.562 6.751 

0.210 0.419 6.922 

0.248 0.301 5.143 
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Figure 2.  Normalized response factors Hie(n∆) for three-layer walls of RC=50h, the same thermal 
diffusivity and different structure factors 
 
 
2. THE “THERMALLY EQUIVALENT WALL” CONCEPT 

 Thermal structure factors ϕii, ϕie, and ϕee defined by the integrals Eqs. (3) and (4), 
together with total thermal resistance RT and capacity C, determine to a great extent the dynamic 
thermal properties of a wall element through the conditions [Eqs. (8) and (9)] they impose on 



 

 

response factors. However, those conditions do not determine the response factors in a unique 
way, but rather act as constraints. Nevertheless, it might be expected that walls with the same 
total thermal resistance, capacity and structure factors, would also have similar dynamic 
characteristics—response factors—even if they are quite different in details. This similarity leads 
to the concept of the “thermally equivalent wall” [5], a simple structure that has the same type of 
dynamic thermal behavior as a more complex one and thus may be substituted for it in building 
design energy use simulations. 
 To demonstrate the possibility of replacing a complex structure with a simple, thermally 
equivalent plane wall, an example was analyzed of a cuboid element, symmetrical with respect to 
its central plane, composed of heavyweight concrete and expanded polystyrene foam (Fig. 3). 
The central part of the element constitutes the thermal bridge in the three-layer wall, which is 
here called the “primary wall.” 
 
Table 3.  Static thermal characteristics of the wall element with a thermal bridge  
of the equivalent wall and primary wall (represented in Fig. 3) 

STRUCTURE R/A 
[m2K/W] 

C/A 
[kJ/m2K] 

ϕϕϕϕie R1/R C1/C 

Thermal bridge 0.5902 269.909 0.10628 - - - - - - 
Equivalent wall 0.5902 269.909 0.10628 0.23676 0.47410 
Primary wall 1.6216 307.409 0.02388 0.04776 0.49759 
 
 Static thermal characteristics of the element are given in Table 3; normalized response 
factors Hie(n∆), at ∆ = 1 h, are presented in Fig. 4. R1  and C1 in Table 3 denote the resistance and 
capacity of the outer parts of the structures, with a thickness of 4 in. A is the area of the 
transverse cross-section. 
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Figure 3.  The wall element representing a composition of two different types of  concrete and 
insulation arrangement 
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Figure 4.  Normalized response factors Hie(n∆) for the wall element with a thermal bridge represented in 
Fig. 3 
 
 The essentially different arrangement of thermal mass and resistance in the thermal bridge 
region, compared with the primary wall, causes significant variation of the structure factor ϕie. 
The structure factor is increased as a result of the translocation of thermal mass to the center and 
resistance to the outer parts of the wall. The course of the normalized response factors Hie(n∆) is 
also significantly modified; they decay more slowly with n. What is important is that the 
response factors for the equivalent wall, which is more nearly homogeneous than the primary 
wall, are almost identical with those for the wall element with the thermal bridge. Therefore, 
substituting the response factors of the equivalent wall for those of the element with the thermal 
bridge provides a much better approximation than does multiplying the response factors of the 
primary wall by the correction factor, to take into account just the change of its resistance.  
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