
Two-Step Procedure for Determining
Three-Dimensional Conduction
Z-Transfer Function Coefficients for 
Complex Building Envelope Assemblies
Elisabeth Kossecka Jan Kosny
ABSTRACT

A two-step method of derivation of conduction z-transfer function coefficients for three-dimensional wall assemblies is
described in this paper. Results of the calculations are presented for clear walls listed in ASHRAE Research Project 1145-TRP
and some other two-core masonry block wall assemblies. Overall resistances, three-dimensional response factors, and structural
factors have been computed using the finite-difference computer code. The z-transfer function coefficients were then derived from
sets of linear equations, which included relationships with the response factors and compatibility conditions. These equations
were solved using a minimum error procedure. Very good agreement between heat fluxes calculated using three-dimensional
response factors and three-dimensional z-transfer function coefficients was achieved.

Additionally, wall time constants, which are important for hot box test measurements, were developed from the asymptotic
values of the response factors’ ratios.

INTRODUCTION 

Transfer function procedures developed by Stephenson
and Mitalas in 1971 pertain to structures made up of layers of
homogeneous materials and have no allowance for walls with
thermal bridges in which three-dimensional heat flow occurs.
Since that time, the z-transfer function method has been used
in passive solar energy calculations and whole building energy
simulation programs to model one-dimensional heat transfer
through walls, roofs, floors, and foundations. 

DOE-2 and other older generation whole-building energy
calculation tools are utilizing (in their heat transfer calcula-
tions) one-dimensional response factors for building envelope
assemblies. Completed during 2002, ASHRAE Research
Project 1145-TRP, “Modeling Two and Three-Dimensional
Heat Transfer through Composite Wall and Roof Assemblies
in Hourly Energy Simulation Programs” demonstrated inac-
curacies related with this simplified one-dimensional
approach (ASHRAE 2001). New and more accurate three-
dimensional calculation procedures were developed and eval-
uated at that time. They were based on the theoretical concept

of the equivalent wall and transient three-dimensional finite-
difference simulations. 

Today, several whole-building energy simulation tools
including EnergyPlus use conduction z-transfer function coef-
ficients in their energy calculations. Also, most of the building
envelope assemblies are not one-dimensional any more. Very
often, they represent complex three-dimensional networks of
structural and insulation materials. That is why it was so
important to develop a relatively simple procedure bridging
already existing computational methods utilizing three-
dimensional response factors and equivalent wall theory with
more advanced methods employing the conduction z-transfer
function coefficients.

Seem et al. (1989a, 1989b) presented a method for calcu-
lating transfer functions for multidimensional heat transfer
from a state space formulation. Spatial discretization of the
problem results in a set of first-order differential equations.
Exact solution to this set of equations is determined to repre-
sent response to the thermal excitation modeled by a contin-
uous, piecewise linear curve.
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Burch et al. (1990) presented a numerical procedure for
calculating first-order conduction transfer function coeffi-
cients for complex building constructions containing two-
dimensional thermal bridges. The heat transfer response to the
ramp excitation was predicted by the finite-difference model;
then regression analysis was applied to subtract the steady-
state response and to determine the first pole of the transfer
function.

Brown and Stephenson (1993) developed a method to
determine transfer function coefficients from the surface
frequency response. This method, based on the Laplace and z-
transfer function formalism, has been used to determine the z-
transfer functions of the full-scale wall specimens with
complex geometries, using guarded hot box procedures.

A method of derivation of conduction z-transfer function
coefficients from the response factors for three-dimensional
wall assemblies is described in this paper. Response factors,
which represent mean surface heat flux generated by triangu-
lar temperature excitations at discrete time instants, are used
as the input data to determine z-transfer function coefficients
from the set of linear equations, which includes relationships
with the response factors and compatibility conditions. This
infinite set of equations is to be solved applying cut off and
using minimum error procedure. The method has already been
presented in the ASHRAE 1145-TRP final report (ASHRAE
2001) and in the paper of Kossecka and Kosny (2001) as an
alternative to the equivalent wall method. It was applied there
to clear walls and selected details. Surface film resistances
were neglected at that time. The method gives very good
results in the sense that heat flux profiles obtained from simu-
lations, using the response factors and the z-transfer function
coefficients, in most cases almost coincide.

In this paper, results of the conduction z-transfer function
coefficient calculations are presented for clear walls listed in
the ASHRAE 1145-TRP report and several other two-core
block masonry walls, including surface film resistances. Over-
all resistances, three-dimensional response factors, and the so-
called structure factors have been computed using the finite-
difference computer code. Very good agreement between heat
fluxes calculated using three-dimensional response factors
and three-dimensional z-transfer function coefficients was
achieved.

RELATIONSHIPS BETWEEN RESPONSE FACTORS
AND Z-TRANSFER FUNCTION COEFFICIENTS

In terms of the response factors, heat flux across the inte-
rior surface of a wall element at time instant nδ, Qi,nδ, can be
represented as follows (Kusuda 1969; Clarke 1985):

(1)

where {Ti,nδ} and {Te,nδ} are sequences of the ambient (or
surface) temperatures values, and {Xn} and {Yn} are
sequences of the response factors.

As far as three-dimensional problems are concerned, heat
flux values in Equation 1, as well as response factors, are to be
understood as averages over the surfaces of a wall element,
separated from the rest of the wall by an adiabatic lateral
surface. Driving temperatures are functions of time only and
do not depend on spatial coordinates, which is also the case
when boundary conditions of the first kind are assumed.
Dimensions of the element and location of the cut-off surface
are to be established while developing a three-dimensional
model, in order to determine its thermal characteristics.

The z-transform of the interior heat flux, Z[Qi] is related
to the z-transforms of the interior and exterior temperature,
Z[Ti] and Z[Te], by the following equation (see Jury 1964):

(2)

where Z[{Xn}] and Z[{Yn}] are the z-transforms of the
sequences of the response factors, {Xn} and {Yn}:

(3)

The compatibility condition response factors Xn and Yn
should satisfy 

(4)

which is equivalent to the following condition for the z-trans-
forms Z[{Xn}] and Z[{Yn}]:

(5)

R denotes the overall resistance per unit surface area, deter-
mined from the average heat flux in the steady-state condi-
tions.

Now let Z[{Xn}] and Z[{Yn}] be given as the quotients 

(6)

where

(7)

Equation 2 can be rewritten in the form 

(8)

Equation 1 for Qi,nδ, assuming d0 = 1, is now replaced by
(see Stephenson and Mitalas 1971) 
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(9)

The dimensionless conduction z-transfer function coeffi-
cients bn and cn correspond to the coefficients bn and cn from
the ASHRAE Handbook—Fundamentals (ASHRAE 1989,
1997) multiplied by R. For the purpose of simulations, only
numerically significant coefficients are important.

Equation 6 for the z-transforms, can be rewritten in the
following form:

(10)

They are equivalent to the convolution type relationships
between the response factors Xn, Yn, and the conduction z-
transfer function coefficients bn, cn, and dn:

(11)

Equation 5 for the z-transforms Z[{Yn}] and Z[{X}] now
has the following form:

(12)

Equation 12 yields the following compatibility condition
for dimensionless z-transfer function coefficients:

(13)

DETERMINING THE Z-TRANSFER FUNCTION
COEFFICIENTS FROM THE RESPONSE FACTORS

On the basis of Equations 11 and 13, one may try to deter-
mine z-transfer function coefficients from the series of
response factors Yn and Xn. This is the most straightforward
method; z-transfer functions obtained in this way are expected
to exactly reproduce the output for any input function
composed of straight-line segments, joining the points that
represent its values at t = nδ.

Assuming that z-transfer function coefficients with indi-
ces above some n are negligibly small and d0 = 1, we obtain
the following set of linear equations:

(14.1)

(14.2)

(14.3)

(14.4)

(14.n)

(14.n+1)
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When structure factors are calculated, together with the
resistance and the response factors, one may use conditions
imposed by the structure factors on the z-transfer function
coefficients as subsidiary equations (Kossecka 1998):

(16)

(17)

Structure factors ϕii and ϕie are given by 

(18)

(19)

where C is the total thermal capacity of the wall element of
volume V with an adiabatic lateral surface:

(20)

and θ is the dimensionless temperature for the problem of
steady-state heat transfer through this wall element for ambi-
ent temperatures Ti = 0 and Te = 1. For plane walls, the prod-
ucts Cϕii, Cϕie are equivalent to the thermal mass factors
introduced by Anderson (1985; see also ISO 1991).

One may use more equations than the number of
unknowns and apply minimum error procedures to get the
solution. Maximum indices Nb, Nc, and Nd of the coefficients
bn, cn, and dn, which should be included, depend on the
specific dynamic thermal properties of a given wall assembly.
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In general, the total number of the numerically significant z-
transfer function coefficients increases with the resistance and
mass of the wall; however, it is not the rule. Trying different
kinds of cutoff of the sequences {bn}, {cn}, and {dn}, one
should control the following quantities:

(21)

where Eb and Ec represent resultant errors of the z-transfer
function coefficients calculations.

Z-transfer function coefficients determined in this way
correspond to the selected time step—here one hour. If a
smaller time step is to be used in simulations, say one-half
hour or 15 minutes, whole procedure must be repeated.

For plane walls, response factors with sufficiently high
indices, above some M, satisfy the condition 

 (22)

(23)

where τ1 is the first, of largest value, time constant of the wall.
Therefore, the set of equations (14.1...14.n+k),
(15.1...15.n+k) for bn, cn, dn is not infinite in the sense that for
sufficiently high indices successive equations are just the
preceding ones multiplied by α. Because α is the root of D(z),
the condition d1 < –α is always satisfied.

Response factors for three-dimensional assemblies have,
in general, similar properties; however, sometimes their ratios
show small variations even for large indices, where they drop
several orders of magnitude, as compared with the first ones.

Solving Equations 11 for Yn, Xn, with d0 = 1, gives the
recurrence formulae, which may be used to additionally verify
the solution obtained for the z-transfer function coefficients:

(24)

(25)

Results of such verification were presented in the previ-
ous paper by Kossecka and Kosny (2001). The method to
calculate z-transfer function coefficients presented above
appears to be “reversible,” in the sense that the response
factors recalculated from z-transfer function coefficients are
almost the same as the original ones.

CONDUCTION Z-TRANSFER FUNCTION 
COEFFICIENTS FOR COMMON WALL ASSEMBLIES

Conduction z-transfer function coefficients were calcu-
lated for 18 common wall assemblies, including surface film
resistances. The list of considered wall assemblies includes
uninsulated two-core block masonry wall, two-core block
masonry wall with foam insulation inserts, two-core block
masonry wall with EPS foam sheathing, concrete sandwich
walls with metal and plastic ties, insulated concrete forms
(ICF wall), and steel- and wood-framed walls.

Dynamic thermal properties of most of them were
analyzed in the frames of the ASHRAE 1145-TRP project,
“Modeling Two and Three-Dimensional Heat Transfer
Through Composite Wall and Roof Assemblies in Hourly
Energy Simulation Programs” (ASHRAE 2001; Kossecka and
Kosny 2001). However, all calculations were performed at that
time for boundary conditions of the first kind, which means
that surface film resistances were not included. Drawings of
those wall assemblies, with simulation areas dimensioned, are
included in the final report of the project. They are also avail-
able at ORNL’s Internet site (http://www.ornl.gov/sci/
roofs+walls/research/detailed_papers/whole_bldg/
index.html). Drawings of most common structures may be
found in chapter 24 of the 1997 ASHRAE Handbook—Funda-
mentals.

Response factors, overall resistances, and structure
factors were calculated using the finite difference computer
code HEATING 7.2 (Childs 1993) for boundary conditions of
the convective type, with standard values of the surface film
resistances, Ri = 0.12 m2⋅K/W (0.69 ft2⋅°F⋅h/Btu) and
Re = 0.06 m2⋅K/W (0.33 ft2⋅°F⋅h/Btu). Thermal characteris-
tics of the wall assemblies: overall resistance, Ru, U-factor,
and capacity, C, are presented in Tables 1 and 3.

The conduction z-transfer function coefficients were
determined as the approximate solutions of the finite system of
equations generated by Equations 14, 15, 16, and 17. The
resultant errors, Eb and Ec, were calculated while trying differ-
ent kinds of the cutoff of the sequences {bn}, {cn}, and {dn}
to satisfy compatibility Equation 13 as well as possible.
Modern professional calculation software allows one to easily
examine different solutions of the problem, modifying the
numbers of unknown variables and using minimum error
procedure to find the solution of a system of N linear equations
with M variables (N ≥ M).

The results are collected in Tables 2 and 4. Accuracy is
within five decimal digits; maximum index of a coefficient
does not exceed 5. Negative values of the coefficients bn with
higher indices, which appear for all steel- and wood-framed
wall assemblies and also concrete blocks, seem questionable at
the sight. It was necessary to admit them, to satisfy with suffi-
cient accuracy, compatibility Equation 13. Only for sandwich
walls are all bn positive. For the coefficients cn and dn, the sign
sequence is always + and −, alternately. One should take into
account, however, that negative value of some bn does not mean
that the impact of a temperature value may be “negative,” as 
temperatures enter into the expression for the current heat flux
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Table 1.  Overall Resistance, U-Factor, Capacity, and Time Constant for Concrete and Insulation Wall Assemblies

No. Wall Assembly Ru U C τs

m2⋅K/W 
[°F⋅ft2⋅h/Btu]

W/m2⋅K
[Btu/h ft2⋅°F]

kJ/m2⋅K
[Btu/ft2⋅°F] h

1 Empty concrete 60 blocks 0.7383 [4.1946] 1.3546 [0.2384] 128.37 [6.2824] 7.37

2 Insulated concrete 60 blocks 1.2489 [7.0960] 0.8007 [0.1409] 129.25 [6.3253] 6.75

3 Empty concrete 60 blocks + 2.5-cm [1-in] EPS foam out-
side

1.4758 [8.3851] 0.6776 [0.1193] 129.11 [6.3186] 10.58

4 Empty concrete 60 blocks+ 2.5-cm [1-in] EPS inside 1.4552 [8.3851] 0.6872 [0.1209] 129.11 [6.3186] 9.73

5 Empty concrete 140 blocks 0.3851 [2.1879] 2.5969 [0.4574] 292.82 
[14.3304]

5.64

6 Insulated concrete 140 blocks 0.5636 [3.2021] 1.7744 [0.3122] 293.70 
[14.3734]

5.77

7 Empty concrete 140 blocks+ 2.5-cm [1-in] EPS inside 1.1212 6.3707 0.8919 [0.1570] 293.57 
[14.3667]

12.55

8 Empty concrete 140 blocks+ 2.5-cm [1-in] EPS outside 1.1212 6.3707 0.8919 [0.1570] 293.57 
[14.3667]

9.55

9 Sandwich wall with metal ties 1.5395 [8.7474] 0.6495 [0.1143] 301.96 
[14.7777]

5.50

10 Sandwich wall with plastic ties 2.0534 [11.6668] 0.4870 [0.0857] 301.73 
[14.7663]

5.62

11 ICF – wall 2.1638 [12.2942] 0.4622 [0.0813] 310.10 
[15.1757]

34.72
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Table 2.  Z-Transfer Function Coefficients for Three-Dimensional Models of Concrete and
Insulation Wall Assemblies, Including Surface Film Resistances

No. n 0 1 2 3 4 5 S E

bn 0.01758 0.14672 -0.04052 -0.06436 -0.00296 0.05646 -0.01645

1 cn 3.20173 -5.97235 3.33807 -0.51873 0.00882 -0.00012 0.05741 0.00000

dn 1 -1.51165 0.63364 -0.06458 0.05741 -

bn 0.00407 0.05540 0.01669 -0.02796 -0.00244 0.04575 -0.00285

2 cn 5.40681 -11.41823 7.97783 -2.09542 0.17809 -0.00309 0.04599 0.00244

dn 1 -1.737821 0.97536 -0.20345 0.01179 0.04588 -

bn 0.00414 0.05219 -0.00955 -0.03183 0.00431 0.00090 0.02016 -0.03194

3 cn 6.40117 -15.23480 12.55344 -4.11490 0.41694 -0.00102 0.02083 0.00000

dn 1 -2.02634 1.37217 -0.34733 0.02232 0.02083 -

bn 0.00582 0.06751 -0.00565 -0.03785 -0.00238 0.02746 -0.02136

4 cn 1.62339 -3.07361 1.77296 -0.30498 0.01030 0.02806 0.00000

dn 1 -1.75990 0.90918 -0.12136 0.00013 0.02806 -

bn 0.01570 0.07061 -0.03852 -0.00504 0.00481 0.00002 0.04758 -0.00007

5 cn 2.48430 -4.98476 3.36797 -0.89864 0.07913 -0.00038 0.04762 0.00092

dn 1 -1.81134 1.10652 -0.26870 0.02111 0.04758 -

bn 0.00270 0.02360 0.00735 0.00114 0.00185 -0.00008 0.03656 0.00000

6 cn 3.62858 -7.84323 5.79526 -1.70882 0.16559 -0.00082 0.03656 0.00000

dn 1 -1.95117 1.30987 -0.35315 0.03101 0.03656 -

bn 0.00398 0.02456 -0.00633 -0.00405 0.00147 0.00021 0.01986 -0.00859

7 cn 7.23373 -15.34183 10.65019 -2.67216 0.15025 0.02003 0.00000

dn 1 -1.92550 1.20168 -0.26899 0.011283 0.02003 -

bn 0.00651 0.03946 0.00180 -0.00062 0.00085 -0.00021 0.04780 -0.01066

8 cn 1.31599 -2.08366 1.04018 -0.30907 0.08794 -0.00305 0.04834 0.00050

dn 1 -1.50948 0.70220 -0.20029 0.05589 0.04831 -

bn 0.00058 0.01539 0.02438 0.00428 0.04463 0.00000

9 cn 16.91909 -31.65908 15.63805 -0.86072 0.00729 0.04463 0.00000

dn 1 -1.58408 0.64365 -0.01494 0.04463 -

bn 0.00034 0.01289 0.02440 0.00509 0.00007 0.04279 0.00000

10 cn 22.52628 -42.30895 20.91198 -1.09482 0.00830 0.04279 0.00000

dn 1 -1.59168 0.64833 -0.01386 0.04279 -

bn 0.00016 0.00314 0.00522 0.00117 -0.00012 -0.00006 0.00952 -0.02542

11 cn 12.02566 -27.94417 21.07057 -5.51797 0.37568 0.00977 0.00000

dn 1 -1.84879 1.08007 -0.23645 0.01494 0.00977 -
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Table 3.  Overall Resistance, U-Factor, Capacity, and Time Constant for Steel Stud and
Wood Stud Wall Assemblies, Completed with Fiberglass Insulation

No. Wall Assembly Ru U C τs

m2⋅K/W 
[°F⋅ft2⋅h/Btu]

W/m2⋅K [Btu/h 
ft2⋅°F]

kJ/m2⋅K [Btu/
ft2⋅°F] h

1 8.9 cm [3.5 in.] steel studs 1.8137 10.3049 0.5514 [0.0970] 30.53 [1.4942] 0.92

2 8.9 cm [3.5 in.] steel studs + 2.5 cm [1 in.] +brick 2.4657 [14.0097] 0.4056 [0.0714] 148.68 [7.2760] 3.47

3 14 cm [5.5 in.] steel studs 2.3016 [13.0770] 0.4345 [0.0765] 31.45 [1.5389] 1.02

4 14 cm [5.5 in.] steel studs + 2.5 cm [1 in.] + stucco 2.9165 [16.5711] 0.3429 [0.0603] 60.26 [2.9489] 1.67

5 14 cm [5.5 in.] steel studs + 2.5 cm [1 in.] + brick 2.9453 [16.7345] 0.3395 [0.0598] 182.81 [8.9465] 6.41

6 8.9 cm [3.5 in.] wood studs 2.1918 [12.4534] 0.4563 [0.0803] 36.64 [1.7933] 2.00

7 14 cm [5.5 in.] wood studs 3.2605 [18.5255] 0.3067 [0.0540] 37.43 [1.8317] 3.37

Table 4.  Z-Transfer Function Coefficients for Three-Dimensional Models of Steel Stud and
Wood Stud Wall Assemblies, Including Surface Film Resistances

No. n 0 1 2 3 4 5 Σ E

bn 0.10290 0.38353 -0.03155 -0.02538 0.00026 0.42975 -0.00324

12 cn 6.18416 -8.32412 2.85936 -0.29637 0.00811 0.43115 0.00000

dn 1 -0.71425 0.15485 -0.00949 0.00003 0.43115 -

bn 0.00097 0.03435 0.05699 -0.00303 -0.00477 -0.00014 0.08436 -0.01025

13 cn 7.39937 -17.21008 14.15948 -4.85369 0.59188 -0.00123 0.08572 0.00563

dn 1 -1.61537 0.86672 -0.17609 0.00998 0.08524 -

bn 0.06863 0.35386 0.00284 -0.03287 -0.00004 0.39241 -0.00390

14 cn 7.84153 -11.13393 4.14433 -0.47195 0.01396 0.39394 0.00000

dn 1 -0.77786 0.18438 -0.01261 0.00005 0.39394 -

bn 0.01392 0.15796 0.08631 -0.02284 -0.00293 0.00002 0.23245 -0.00878

15 cn 8.70566 -16.10892 9.75526 -2.28619 0.17089 -0.00038 0.23632 0.00770

dn 1 -1.11905 0.40682 -0.05578 0.00253 0.23451 -

bn 0.00048 0.01898 0.03344 -0.00107 -0.00267 -0.00005 0.04911 -0.01959

16 cn 10.09872 -25.36201 22.57858 -8.36114 1.10193 -0.00571 0.05037 0.00574

dn 1 -1.69548 0.90411 -0.16292 0.00437 0.05009 -

bn 0.07152 0.25529 -0.06834 -0.02065 0.00262 0.24044 -0.00326

17 cn 7.49542 -12.34863 5.84959 -0.77689 0.02174 0.24123 0.00000

dn 1 -1.03256 0.29774 -0.02395 0.24123 -

bn 0.05121 0.22681 -0.17619 -0.01033 0.01910 0.11059 -0.00897

18 cn 11.07512 -23.55336 16.88365 -4.85108 0.55727 0.11159 0.00000

dn 1 -1.47720 0.72559 -0.14766 0.01087 0.11159 -
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(Equation 9) not only through bn and cn, but also through the
preceding values of the heat flux itself. 

ESTIMATION OF THE WALLS TIME CONSTANTS

Proper estimation of a wall’s time constant is important
for the hot box test measurements. The hot box apparatus is
designed to determine thermal performance for representative
test specimens by establishing and maintaining a desired
steady temperature difference across the specimen for the
period of time necessary to ensure constant energy flux and
steady temperatures and for an additional period adequate to
measure these quantities to the desired accuracy. The required
time to reach stability for a steady-state test depends upon the
properties of both the specimen and of the apparatus, as well
as upon the initial and final conditions of the test. A combined
apparatus and specimen time constant calculated from dimen-
sions and estimated physical properties can be used in esti-
mating stabilization time. Since the test apparatus does not
change with test sample, it is recommended that the apparatus
time constant be determined by experimental means (see
ASTM Standard C 1363-97). Repeating the same experimen-
tal procedure for every test sample would be expensive, so a
calculation method to estimate the sample time constant might
be useful. 

Assuming the analogy between one-dimensional and
three-dimensional cases means that the asymptotic transient
response decay is also governed by a single exponential func-
tion, we may, therefore, determine the largest wall’s time
constant, τs, from the ratio, α, of the response factors with high
indices (Equation 22):

(26)

Values of time constants developed from the asymptotic
values of the response factors’ ratios are collected in Tables 1
and 3. They were calculated to illustrate dynamic thermal
properties of walls. In general, time constants calculated in

this way for complex wall assemblies, in which three-dimen-
sional heat flow occurs, have higher values than for similar (in
the sense of total resistance, capacity, and arrangement of
materials with different thermal properties) plane-layer wall
assemblies.

Test Simulations

Test simulations were performed, using as the external
temperature excitation the sol-air temperature1 calculated for
a vertical surface facing west, for a sunny day of February in
Warsaw (see Figure 1). Internal temperature represented peri-
odic variations with amplitude of 1°C (1.8°F) around a mean
value of 20°C (68°F). The same daily temperature courses
were repeated several times, to eliminate the effect of initial
conditions. The heat flux across the inside surface of a wall
was calculated in two ways, using response factors for the
three-dimensional model and three-dimensional z-transfer
function coefficients derived from the response factors. 

Results of simulations for the lightweight 3.5 steel stud
wall, of time constant below one hour, are presented in Figure
2. Differences between the heat flux values calculated using

Figure 1 Internal and external temperature courses used
for simulations.

τs
δ

αln
---------–=

1. Sol-air temperature is the equivalent outdoor temperature that will
cause the same rate of heat flow at the surface and the same
temperature distribution through the material as the current
outdoor air temperature, the solar gains on the surface, and the net
radiant exchange between the surface and its environment.

Ts = To + G·a·Rso

where 
Ts = sol-air temperature (°C),
To = outside air temperature (°C),
G = total incident solar radiation (W/m²),
a = solar absorbance of surface (0-1), and
Rso = outside air-film resistance.

Figure 2 Comparison of the heat flux simulation results for
the 8.9-cm [3.5-in.] steel stud wall.
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three-dimensional response factors and three-dimensional z-
transfer function coefficients are almost invisible.

Figures 3, 4, and 5 present results of simulations for the
concrete and insulated wall assemblies, with time constants
between 5 and 10 hours: empty and insulated lightweight
concrete blocks and empty heavyweight concrete blocks with
1-in. EPS foam layer inside; differences here are also very
small.

Figures 6 and 7 present heat flux profiles for the sandwich
wall with metal and plastic ties, respectively. Differences are
significant only for the last case. Figure 6 is completed with
the steady-state and average steady-state values to show
dynamic effects. Steady-state values are to be understood as
products of U-factor and ambient temperature differences.
Weak internal periodic thermal excitation generates heat flux
of significant amplitude, which is a consequence of high inter-
nal admittance amplitude of a wall with an internal heavy-
weight concrete layer. Average heat flux values perfectly
coincide.

When evaluating results of the heat flux simulations,
performed using the z-transfer function coefficients calculated
from the response factors, one should remember that some
errors are generated when calculating the response factors
themselves, as Equation 4 is not always satisfied with the
required accuracy.

CONCLUSIONS

The method of derivation of the conduction z-transfer
function coefficients from the response factors, for three-
dimensional wall assemblies including surface film resis-
tances, gives satisfactory results.

The list of 18 wall assemblies considered includes two-
core block masonry walls, empty and with insulation inserts,
two-core block masonry wall with EPS foam sheathing,

concrete sandwich walls with metal and plastic ties, insulated
concrete forms (ICF wall), steel- and wood- framed walls.

Response factors for three-dimensional models, calcu-
lated with the help of the finite difference computer code
HEATING 7.2, for convective-type boundary conditions,
were used as input data to determine z-transfer function coef-
ficients from the primarily infinite set of linear equations,
which includes relationships with the response factors and
compatibility conditions. For each case, different kinds of
cutoff of the sequences {bn}, {cn}, and {dn} were considered,
and minimum error procedure was applied while seeking for
the solutions to satisfy, as best as possible, compatibility
conditions. 

Figure 3 Comparison of the heat flux simulation results for
the empty concrete 60 blocks.

Figure 4 Comparison of the heat flux simulation results
for the insulated concrete 60 blocks.

Figure 5 Comparison of the heat flux simulation results for
the empty concrete 140 blocks with +2.5-cm [1-
in] EPS foam layer inside.
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The maximum index of a z-transfer function coefficient
does not exceed 5 to maintain accuracy of 5 decimal digits. It
was necessary to admit negative values of the coefficients bn
with higher indices to satisfy, with sufficient accuracy,
compatibility equations. For the coefficients cn and dn the sign
sequence is always + and −, alternately. 

Test simulations, performed for an external temperature
excitation of high amplitude, show very good compatibility of
the heat flux calculated using three-dimensional response
factors and three-dimensional z-transfer function coefficients
derived from the response factors.

NOMENCLATURE

δ = time instant; (h)
Qi,nδ = heat flux at time nδ across the interior surface; 

W/m2 (Btu/(h⋅ft2))
Ti,nδ = interior temperature at time nδ; °C (°F)
Te,nδ = exterior temperature at time nδ; °C (°F)
Xn, Yn = response factors; W/(m2⋅K) (Btu/(h⋅ft2⋅°F))
Z{Q}, Z{T}, Z{X}, Z{Y}, B(z), C(z), D(z) = z-transforms
bn, cn, dn = dimensionless heat conduction z-transfer 

function coefficients (-)
Nb, Nc, Nd = maximum index of numerically significant 

coefficient bn, cn, dn, respectively
Eb, Ec = relative errors of the z-transfer function 

calculations [-]
V = volume of a wall element; m3 (ft3)
Ru = overall thermal resistance per unit surface area 

of a wall, m2⋅K/W (ft2⋅°F⋅h/Btu)
C = capacity per unit surface area of a wall, kJ/

(m2⋅K) (Btu/(ft2⋅°F))
cp = specific heat, J/(m3⋅K) (Btu/(lb⋅°F))

ρ = density, kg/m3 (lb/ft3)

θ = dimensionless temperature (-)

ϕii, ϕie = structure factors (-)

τs = largest time constant of a wall
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