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ABSTRACT

The discrete ordinates adjoint function is employed to accelerate Monte Carlo

reactor cavity dosimetry calculations. Equations for calculating source biasing

parameters and weight window lower bounds based on importance sampling are

developed. The facilities to calculate and use these parameters directly have

been incorporated into the MCNP code. Use of the adjoint function is shown

to increase the e�ciency of the reaction rate calculation by more than a factor

of 4 and improve the statistical convergence, with respect to our best manually

optimized model. Further, the use of the adjoint function does not require the

intuition, guess work, and/or iterative process characteristic of current variance

reduction techniques.

1. Introduction

Reactor cavity dosimetry is performed to benchmark models for pressure vessel

uence calculations. These calculations attempt to estimate reaction rates at a dis-
tance of �350 cm from the core centerline and are used to estimate RPV integrity and

provide a basis for plant life extension. In the past, the discrete ordinates (SN) method
was used to perform these calculations. More recently, the Monte Carlo method has
been employed for this application in an e�ort to better understand uncertainties
associated with the SN method and to attempt to benchmark SN calculations.1;2

However, due to its nature of simulating individual particles and inferring the

average behavior of the particles in the system from the average behavior of the indi-
vidually simulated particles, the Monte Carlo method is extremely computationally
expensive. In fact, for many applications the computer time required by the ana-
log Monte Carlo method is prohibitive. Therefore, for di�cult problems in which the

probability that a particle will contribute to the detector of interest is small, some form
of variance reduction or biasing must be applied. Herein, the expressions variance

reduction and biasing refer to fair-game techniques used in Monte Carlo calculations
to reduce the computer time required to obtain results of su�cient precision.

The application of variance reduction techniques can be quite di�cult for real-
istic problems that are often complex and three-dimensional. The shielding analyst



typically engages in an iterative process to develop the variance reduction parame-
ters; converging at some acceptable level of calculational e�ciency. Unfortunately,

the appropriate variance reduction parameters vary signi�cantly with problem type
and objective. Therefore, the iterative steps must be repeated for calculations with
di�erent objectives. Automatic importance generators, such as the weight window
generator in MCNP (Ref. 3), are currently available, but are restricted by their sta-

tistical nature and are of limited use in multi-dimensional deep-penetration problems.
In the absence of more sophisticated methods, however, the weight window generator
is a very useful tool in determining the variance reduction parameters.4

A further di�cultly lies in the statistical convergence of the Monte Carlo results.

For large complex applications, it is not uncommon to spend days (and possibly
weeks) iterating and adjusting the variance reduction parameters only to achieve
reasonable e�ciency with unstable statistical behavior. This unstable statistical be-
havior is caused by improper use of the variance reduction methods (i.e., insu�cient
detail and/or inappropriate selection of the parameters) and is usually the result

of undersampling some important region of the problem phase-space.5 Further, this
undersampling is often di�cult to identify and correct.

The adjoint function (i.e., the solution to the adjoint Boltzmann transport equa-
tion) has physical signi�cance as a measure of the importance of a particle to some

objective function (e.g., the response of the detector).6 This physical interpretation,
in theory, makes the adjoint function well suited for use as an importance function
for biasing Monte Carlo calculations.

In this paper, we demonstrate a procedure for using the SN adjoint function to

accelerate Monte Carlo calculations through source biasing and consistent transport
process biasing using the weight window technique. This procedure is applied to a
realistic calculation, namely the reactor cavity dosimetry calculation, and the increase
in calculational e�ciency is quanti�ed.

2. Theory

Problems that can be solved by the Monte Carlo method are essentially equiva-
lent to integrations.7 For example, the goal of most Monte Carlo particle transport
problems is to calculate the response (i.e., 
ux, dose, reaction rate, etc.) at some
location. This is equivalent to solving the following integral
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where 	 is the particle 
ux and �d is some objective function.
From the following identity6
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where Hy is the adjoint operator and hi signify integration over all the independent
variables, one can show that the response R (under certain boundary conditions) is
also given by
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where 	y and q(r; E) are the adjoint function and source density, respectively, and
(Eqs. 1 and 2) are equivalent expressions for R.

To solve this integral the independent variables are sampled from q(r; E), which
is not necessarily the best probability density function (pdf) from which to sample.
An alternative pdf , q̂(r; E), can be introduced into the integral as follows:

R =
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where q̂(r; E) � 0 and
R
V

R
E q̂(r; E)dV dE = 1.

From importance sampling8, the alternative pdf , q̂(r; E), that will minimize the
variance for R is then given by

q̂(r; E) =
	y(r; E)q(r; E)

R
: (4)

Thus to accelerate the Monte Carlo calculation, the source energy and positions
are sampled from the biased source distribution q̂(r; E). Physically, the numerator is
the detector response from the space-energy element (dV; dE), and the denominator
is the total detector response R. Therefore, the ratio is a measure of the contribution

to the detector response.
Since the source variables are sampled from a biased pdf , the statistical weight of

the source particles must be corrected such that

q̂(r; E) W (r; E) = q(r; E): (5)

Substituting (Eq. 4) into (Eq. 5) and rearranging, we obtain the following ex-
pression for the statistical weight of the particles

W (r; E) =
R

	y(r; E)
=

q(r; E)

q̂(r; E)
: (6)

To use the weight window facilities within MCNP, we need to calculate weight

window lower bounds Wl such that the statistical weights de�ned in (Eq. 6) are at
the center of the weight windows (intervals). The width of the interval is controlled
by the parameter Cu, which is the ratio of upper and lower weight window values
(Cu =

Wu

W
l

). Therefore, the weight window lower bounds Wl are given by

Wl(r; E) =
W

(Cu+1
2

)
=

R

	y(r; E)
1
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2

)
: (7)

It is important to note that we have derived expressions for source biasing param-
eters and weight window lower bounds in a consistent manner, and thus the statistical
weights of the source particles (W (r; E) = q(r;E)

q̂(r;E)
) are within the weight windows as

desired. If the statistical weights of the source particles are not within the weight
windows, the particles will immediately be split or rouletted in an e�ort to bring their



weights into the weight windows.3 This will result in unnecessary splitting/rouletting
and a corresponding degradation in computational e�ciency.

3. Implementation into MCNP

3.1 Overlay of Importance Function

The general version of MCNP provides facilities for energy and cell dependent
weight windows. In order to use a �ne spatial weight window grid (which is necessary

in optically thick regions), the user must subdivide the cell based geometry into
many cells. The subdivision of the geometry into a very large number of cells is time
consuming and can actually degrade the e�ciency of the calculation. Further, there
are no general guidelines for this geometric discretization. For this reason, we use the

SN spatial mesh description to construct a separate, but related, geometric grid to
facilitate the use of the adjoint distribution. This is done with a modi�ed version of
the MCNP code that is able to read the binary 
ux �le (which contains the adjoint
function and the spatial mesh and energy group information) from the standard SN

DORT (Ref. 9) code and superimpose the variable spatial mesh and energy grid onto

the MCNP problem.

3.2 Weight Checking

Various concepts for minimizing the amount of computational overhead associated
with this process have been examined. An issue of concern is the determination of

the appropriate time (or event) to check the particle's statistical weight. This is
important for the following reasons: (1) because the MCNP geometry does not need to
be manually subdivided to facilitate the spatial importances, the presently available
weight checks (i.e., at collisions and surface crossings) are no longer su�cient to

control particle weight and thus large di�erences in the weight scored by individual
particles are possible, (2) there is a computational cost or penalty each time the
weight is checked, and this penalty is the time required by the searching routines to
determine the importance of the phase-space within which the particle resides, and
(3) more frequent checking leads to more reliable results with well-behaved statistical

convergence, but at some point the calculational e�ciency is sacri�ced. Therefore, it
is clear that we need to determine an optimum or near-optimum criteria for checking
particle statistical weights. Moreover, it is desirable that this criteria be problem
independent.

Since the mean free path (mfp) is, by de�nition, the average distance a particle
travels between collisions, it is a logical, problem independent parameter by which
particle statistical weight can be controlled. Parametric studies analyzing the e�ect
of the increment of mfp on problem e�ciency and reliability are described in Ref. 10.



Fig. 1. Adjoint for Energy Group 3 Fig. 2. SN Spatial Mesh

4. Analysis

For this application, the 63Cu(n,�), 58Ni(n,p), and 54Fe(n,p) reaction rates (re-

sponses), which have thresholds energies of �5.0, �1.0, and �1.0 MeV, respectively,
are all of equal interest, and thus we calculate an e�ective response function as the
normalized sum of each of the normalized response functions. Using this e�ective
response function, we can generate an importance function that will simultaneously

optimize the calculation for all three reaction rates, and thus avoid calculating an
importance function for each individual response that would require three separate
Monte Carlo calculations.

With this e�ective response function as the adjoint source, a 2-D R-� adjoint
function is calculated with the DORT code using the SAILOR P3 47-group library11

and a symmetric S8 quadrature set. Figure 1 shows this adjoint function distribution
for energy group 3 (10.00-12.14 MeV). The modi�ed version of MCNP reads the
adjoint function, couples the original source distributions with the adjoint function
to generate the source biasing parameters and weight window lower bounds, and then

performs the transport calculation. The SN spatial mesh which is used within MCNP
to facilitate the spatial importance distribution is shown in Fig. 2. The following
approximations/assumptions are made in this process: (1) the axial behavior for the
adjoint function is approximated with a cosine distribution, and (2) to represent the

spatial dependence of the energy biasing parameters, the energy dependent adjoint
function is averaged over each user de�ned spatial source cell, and a dependent source
energy biasing distribution is calculated for each source cell. For this particular
application, each assembly has an associated source energy biasing distribution.

Since the focus of this paper is the acceleration procedure, the interested reader is



Table 1: C/E Ratios at the Cavity Dosimeter for TMI-1

Manually Optimized Adjoint Importance

Reaction C/E FOM C/E FOM
63Cu(n,�) 0.905 (0.022)a 3.7 0.887 (0.038)a 16
54Fe(n,p) 0.965 (0.023) 3.5 0.944 (0.033) 20
58Ni(n,p) 0.947 (0.020) 4.5 0.886 (0.032) 22

a 1� uncertainties

referred to the references for discussions regarding the accuracy of results with respect
to measurements and SN calculations, as well as sensitivity studies related to various
aspects of this calculation. However, to provide some indication of the accuracy

and to demonstrate that the acceleration technique does not bias the calculation,
calculated-to-experimental (C/E) ratios, corresponding to ENDF/B-V material cross
sections and SAILOR dosimetry cross-sections, are given in Table 1. The di�erences
between C/E ratios calculated with the manually optimized model and with the

adjoint importance function are within the statistical uncertainties.

4.1 Calculational E�ciency

Without the use of variance reduction techniques, the calculation of reaction rates
at the cavity dosimeter with su�cient precision is not feasible. However, with the use
of the adjoint function, the computer time required by the MCNP model to calculate

the reaction rates at the ex-vessel cavity dosimeter with 1� uncertainties of less than
3% is �1 hour on an IBM RISC/6000 model 370. To reach the same precision
(3%) with the manually optimized model requires nearly 5 hours of CPU time. This
behavior is demonstrated in Fig. 3 which plots relative error and Cp

T
(where C is a

constant and T is computer time) versus computer time for the three reaction rates of
interest. The two sets of curves in Fig. 3 correspond to calculations performed with
di�erent importance functions; namely, the manually optimized importance function

generated with the assistance of the weight window generator (2 energy groups) and
an importance function derived from a 2-D adjoint function distribution (18 energy
groups) using the e�ective response function.

It is important to note that the relative error RE follows the expected behavior

predicted by the Central Limit Theorem (RE �
1p
N
�

1p
T
; where N is the number of

particle histories), which indicates the validity of the estimated relative errors. More-
over, the use of the adjoint importance function clearly leads to smoother statistical
convergence, thereby producing more reliable error estimations. All three reaction

rate tallies pass all 10 of the MCNP statistical checks3, providing an additional indi-
cation of proper statistical convergence.

Table 1 lists the �gure of merits (FOM) [FOM = 1=(RE)2T ] and reveals that
the use of the adjoint importance function increases the calculational e�ciency by a
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factor of 4 with respect to our best manually optimized importance function.
The aforementioned computer times do not include the SN adjoint calculation.

Also, for the purpose of comparison, the SN reaction rate calculation (18 group,
E > 1:0MeV ) requires 3 individual DORT calculations, R-�, R-Z, and R; which
require �40 minutes of total computer time.

5. Summary

A general method for accelerating Monte Carlo transport calculations through

source biasing and consistent transport process biasing has been presented. This
method is implemented into the general purpose Monte Carlo code MCNP and applied
to a realistic calculation, namely the reactor cavity dosimetry calculation. With the
use of the adjoint (importance) function, the e�ciency of the reaction rate calculation

is shown to increase by factor of 4 and the statistical convergence is improved. Further,
the use of the adjoint function does not require the intuition, guess work, and/or
manual intervention typical of current variance reduction techniques (or importance
function generators), thus signi�cantly reducing the analyst's time for performing

these calculations.
The limitation to this approach is the requirement of an SN adjoint solution.

Therefore, strategies for generating input �les for SN calculations directly fromMCNP



input �les are being developed. Coupling the work described in this paper with these
strategies will result in the automation of the generation and application of the adjoint

function for MCNP calculations.
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