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Abstract —Although the Monte Carlo method is considered to be the most accurate method available for
solving radiation transport problems, its applicability is limited by its computational expense. Thus, bias-
ing techniques, which require intuition, guesswork, and iterations involving manual adjustments, are em-
ployed to make reactor shielding calculations feasible. To overcome this difficulty, we have developed a
method for using the,Sadjoint function for automated variance reduction of Monte Carlo calculations
through source biasing and consistent transport biasing with the weight window technique. We describe
the implementation of this method into the standard production Monte Carlo code MCNP and its appli-
cation to a realistic calculation, namely, the reactor cavity dosimetry calculation. The computational
effectiveness of the method, as demonstrated through the increase in calculational efficiency, is demon-
strated and quantified. Important issues associated with this method and its efficient use are addressed
and analyzed. Additional benefits in terms of the reduction in time and effort required of the user are
difficult to quantify but are possibly as important as the computational efficiency. In general, the auto-
mated variance reduction method presented is capable of increases in computational performance on the
order of thousands, while at the same time significantly reducing the current requirements for user expe-
rience, time, and effort. Therefore, this method can substantially increase the applicability and reliability
of Monte Carlo for large, real-world shielding applications.

I. INTRODUCTION tains uncertainties associated with the discretization of
the independent variables of the transport equation. In
this work, we take advantage of the strengths of both

crete ordinatesand stochasti¢ Monte Carlg methods mﬁthﬁds an?\use tor|1em|in adcompletgweélgcary manner. Spe-
are most often used to solve shielding-type problems.A‘s‘I ically, we have developed a method for using e

one might expect, each method has its own strengths a joint function for automatic variance reduction of Monte
weaknesses. In gjeneral Monte Carlo methods are mo arlo calculations through source biasing and consistent

accurate, but they require far greater computational rél @nSPort biasing with the weight window technique.

sources. This is particularly true for deep-penetration o

shielding calculations involving attenuation of several or- |.A. Motivation
ders of magnitude. Despite the steady increase in avail- . .
able computational performance, unbiased or analo The Monte Carlo method is considered to be the most

Monte Carlo methods are not practical, or even possibl¢iccurate method presently available for solving radia-

for real reactor shielding applications. For these applicallon transport problems. However, because of its very na-

; iture of simulating individual partiqles and inferring the
ordinates(Sy) method is used: however, the latter con-2verage behavior of the particles in the system from the
average behavior of the individually simulated particles,
it is extremely expensive computationally. In fact, for
*Current address: Holtec International, 555 Lincoln Drive many reactor applications, as well as medical and nuclear-
West, Marlton, New Jersey 08053. well-logging applications, the computer time required by

In the field of nuclear engineering, determinigitis-
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AUTOMATED MONTE CARLO VARIANCE REDUCTION 187

the analog Monte Carlo method is prohibitive godim-  to the calculational objective was known. All of these
practical. As a simple example, consider a problem itechniques modify the physical laws of radiation trans-
which the transmission probability is 1® If we assume port in an attempt to sample more particles in regions of
that 1000 particle histories can be simulated per seconthe phase-space that contribute to the objediivee, de-

we can approximate that6.7 X 10° min, or 1.3 yr, of tector. To compensate for this departure from the phys-
CPU time would be required to reach an acceptabie lical laws of radiation transport, the concept of particle
statistical uncertainty of 5%. If we further assume thatweight(w) is introduced, where the weight can be con-
we have exclusive access to a large enough number sfdered as the number of particles being transported. When
computer processors to achieve a factor of 100 speedug,variance reduction technique is applied, the weight of
this calculation would still require nearly 5 days. There-the particle is adjusted using the following “conserva-
fore, for difficult shielding problems in which the prob- tion” formula:

ability is small that a particle will contribute to the detector

of interest, some form of variance reduction or biasing w [biased probability density functiompdf)]

must be applied. Herein, the expressigagance reduc-

tion and biasing refer to fair-game techniques used in = Wp (unbiased pdf , (1)
Monte Carlo calculations to reduce the computer time
required to obtain results of sufficient precision. wherew, is the weight before the variance reduction tech-

To make a difficult Monte Carlo shielding calcula- nique is applied. Therefore, nonanalog Monte Carlo is
tion computationally practical or, in most cases, possiacceptabldi.e., it produces correct, unbiased estimates
ble, we employ our basic knowledge of the physics ofas long as the particle weights are conserved. For exam-
the problem and the available variance reduction techple, in the implicit capture technique, a particle always
niques to coerce important particles to contribute to thesurvives a collision, but the particle emerges from the
quantity of intereste.g., reaction rate, dose, gtaVhile  collision with a weight that has been reduced by a factor
the application of variance reduction techniques is fairly(os/o¢), which is the probability of scattering. Thus, the
straightforward for simple one-dimensional problems, ittotal particle weight is conserved.
can be quite difficult for realistic problems, which are While some of these techniques, such as splifting
often complex and three-dimensional. Thus, the shieldroulette and implicit capture, have widespread applica-
ing analyst typically engages in an iterative process tdility, others, such as the exponential transformation and
develop the variance reduction parameters and sulferced collisions, have been developed for particular
divide the geometry to facilitate the parameters, convergelasses of problems. Nevertheless, these techniques and
ing at some acceptable level of calculational efficiencymany others are available in the standard production
Unfortunately, the appropriate variance reduction paramMonte Carlo codes, such as MCNRef. 7), MORSE
eters vary significantly with problem type and objective.(Ref. 8§, MCBEND (Ref. 9, and TRIPOLI(Ref. 10.
Therefore, the iterative steps must be repeated to deter- The biasing schemes for Monte Carlo particle trans-
mine the variance reduction parameters for calculationgort can be divided into three major categories: source
with different objectivegeven for the same problem biasing, transport biasing.g., splitting'roulette and ex-

A further difficulty lies in the statistical conver- ponential transformation and collision biasinge.g.,
gence of the Monte Carlo results. For large, complex apdiscrete-angle biasing, forced collisions, and implicit cap-
plications, itis not uncommon to spend daged possibly ture). As the names suggest, the three methods bias the
weeks, depending on the problem, the user’s experiencepurce-sampling, transport, and collision processes, re-
and the desired precisipiterating and adjusting the vari- spectively. Of these methods, the transport-biasing method
ance reduction parameters, only to achieve reasonable @it splitting/roulette has been the most important method
ficiency with unstable statistical behavior. This unstablefor increasing the efficiency of Monte Carlo calculations
statistical behavior is caused by improper use of the varin general:’
ance reduction methodse., insufficient detail angor As mentioned, all of the techniques require problem-
inappropriate selection of the paramejeasd is usually specific parameters that are dependent on the impor-
the result of undersampling some important region of theance of particles with respect to the objective function
problem phase-spaceFurther, this undersampling is and are therefore difficult to use. Booth and Hendriéks

often difficult to identify and correct. state, “The selectiofof parameterkis more art than sci-
ence, and typically, the user makes a few short trial runs
I.B. Review of the Literature and uses the information these trials provide to better

guess the parameters; that is, the user learns to adjust pa-
Over the past several decades, a large number of tecitameters on the basis of previous experience.”
niques have been developed to reduce the variance orin- Responding to this difficulty, a number of strategies
crease the efficiency of Monte Carlo calculationThese  for determining variance reduction parameters based on
techniques were formulated with the premise that the imthe concept of learning were proposed and developed.
portance of particlesimportant function with respect MacDonald® demonstrated that through the use of pattern
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188 WAGNER and HAGHIGHAT

recognition techniques, the Monte Carlo splitting surerator is a very useful tool in the iterative process of
faces could be learned. The learning mechanics were quitetermining the variance reduction parametérs.
involved, and the method worked with very limited suc-  Therefore, it is apparent that a deterministic means
cess on complicated geometries. Deutsch and Cértenf generating problem-dependent importances would be
showed that importances could be estimated at geometvgry beneficial for applying the Monte Carlo method to
surfaces during a forward Monte Carlo calculation andarge/complex problems. It has long been recognized that
subsequently used to assist the analyst in manually stte adjoint functioni.e., the solution to the adjoint Boltz-
lecting the various variance reduction parameters. Goldnann transport equatipmas physical significance as a
stein and Greensp&hdeveloped a recursive Monte Carlo measure of the importance of a particle to some objec-
(RMC) method for estimating the importance functiontive function(e.g., the response of a detegtérlt is this
distribution. The method involved extensively subdivid-physical interpretation that, in theory, makes the adjoint
ing the geometric regions and solving the forward probfunction well suited for use as an importance function
lem for region importances with varying degrees offor biasing Monte Carlo calculations.
accuracy. While this work was reasonably successful, it Coveyou, Cain, and Yo$tdeveloped an inverse re-
was concluded that for deep-penetration problems to Hation between particle statistical weight and the adjoint
efficient, the relevant importance function distribution(importance function and showed the merits of the im-
must be known with sufficient accuracy; insufficient ac-portance function for transport and source biasing. Klos
curacy can lead to significant errors in the prediction oflescribed the importance-sampling technique and its
the detector response. Further, Goldstein and Greenspasation to an importance function and a zero-variance so-
concluded that it is far better to invest more time in thdution. Following these works, a number of applications of
importance estimation calculatiofthe RMC calcula- deterministic and approximate adjoint solutions were made
tion) than in the detector response calculation. with varying degrees of succe$s3’ Tang, Stevens, and
Continuing along these lines, Bodtrand Booth and Hoffmar?’ applied the one-dimension&|, adjoint solu-
Hendricks!® developed an importance estimation techtion to biasing shipping-cask calculations with MORSE.
nique called the forward-adjoint generator, which hadiller et al.?® developed an automatic importance gener-
since become known as the weight window genetétor ator for geometric splitting based on diffusion calcula-
because it estimates importances to be used with th®ns and have incorporated it into the MCBEND code.
weight window technique. The weight window tech-MickaeP'*?developed a version of MCNP that performs
nique, which is available in the standard version of MCNPan adjoint diffusion calculation to generate weight win-
is simply a space- and energy-dependent facility by whicdow parameters for nuclear-well-logging calculations.
splitting and Russian roulette are applied. The importancgurner® has described the localimportance function trans-
is estimated as the ratio of the total score due to particlderm method, which uses a deterministic adjoint to bias
(and their progenyentering a cell to the total weight en- distance-to-collision and selection of postcollision en-
tering a cell, in a forward Monte Carlo calculation. ergy group and direction for multigroup Monte Carlo cal-
Independently, another stochastic optimizatiorculations. Recently, Van Riper et al. have developed the
method, the direct statistical approad@SA), was intro-  AVATAR method?” which uses the basic inverse relation
duced by Dubi, Elperin, and Dudzitkand Dubi, Gugvitz, between statistical weight and importance to calculate
and Burrt® and later extended by Buri:*°In the DSA, space-, energy-, and angular-dependent weight windows
expressions for the dependence of the second momenvm a three-dimensional adjoint calculation.
and the calculation time on the splitting parameters are  Thus, the idea of using the adjoifnportance func-
derived. From these expressions and initial “learning” caltion for variance reduction of Monte Carlo calculations
culations to estimate the second moment and time funés not new. However, several issues related to obtaining
tion, splitting parameters may be optimized. and using the adjoint function remain. Specifically, pre-
These approaches to estimating importances are basious work has not precisely accounted for the inherent
to the forward-learning Monte Carlo methods, and thereigoupling between source and transport biasing, and most
lies the fundamental problem. To accurately estimate thigave required predefined spatial meshes for the Monte
importance of a space-energy interval, a sufficient numecarlo calculations and thus have focused on specific prob-
ber of particles must pass through that space-energy ifem types.
terval and proceed to contribute to the objective. Inpractice, In this work, we propose a method for using B¢
this condition is typically not met, and as a result, eitheadjoint function for automatic variance reduction of Monte
no importance estimate or an unreliable importance estarlo calculations through source biasing and consistent
mate is generated for each space-energy interval. Thergansport biasing with the weight window technique. We
fore, currentforward Monte Carlo importance generatorsjeviate from the standard inverse relation and use the con-
such as the weight window generator, are restricted by thetept of importance sampling to derive consistent rela-
statistical nature and are of limited use in multidimen-+ions for source-biasing parameters and weight window
sional deep-penetration problems. In the absence of mol@ver bounds. For brevity, we refer to this method as
sophisticated methods, however, the weight window gencADIS (consistent adjoint driven importance samp)ing
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AUTOMATED MONTE CARLO VARIANCE REDUCTION 189

Source bhiasing is extremely important beca(eaet  ample, the goal of most Monte Carlo particle transport
is very effective in reducing the variance, affij it al-  problems is to calculate the resporise., flux, dose, re-
lows us to derive equations for the source-biasing paranaction rate, et¢.at some location. This is equivalent to
eters and weight window lower bounds such that thesolving the following integral:
particles are produced with corresponding weights within
the weight window intervals. Previous methods, such as R = f V(P P) dP 2
AVATAR, which use the inverse of the adjoint function P (P)oa(P) ’ @
normalized to a particulafor averagg source location ) ) ) o
and energy, do not account for the inherent coupling behere ¥ is the particle flux andrq is some objective
tween source and transport biasing. Further, they do nd¢nction in phase-spade, E, () € P.
take full advantage of the adjoint function via source bi-  From the following adjoint identity;
asing. As a result, these methods are not effective for prob- + _ Fort
lems containing highly distributed sources, such as most (WTHY) = (YR ®)
reactor shielding problems, in whlc_h the agjqut function\yhereH 1 is the adjoint operator and) signify integra-
can vary by several orders of magnitude within the sourcgqp, gyer all the independent variables, one can show that

region. They are, however, effective for problems charyye responsg (for a vacuum boundary conditidis also
acterized by point-type sourcésg., monoenergetic point given by

source, such as nuclear-well-logging problems.

We describe the implementation of CADIS into the N
standard production Monte Carlo code MCNP and its ap- R= f wi(P)q(P)dP, (4)
plication to a realistic calculation, namely the reactor cav- P
ity dosimetry calculation. The effectiveness of the methodwhere¥" andq are the adjoint function and source den-
as demonstrated through the increase in calculational esity, respectively, and Eq&2) and(4) are equivalent ex-
ficiency, is demonstrated and quantified. Moreover, thisressions foR. The function¥'(P) has physical meaning
paper addresses important issues associated with this pegs the expected contribution to the respoR$®m a par-

cedure and its efficient use and implementation. ticle in phase-spade, or, in other words, the importance
The CADIS method has the following desirable of a particle to the response.
features: To solve this integral with the Monte Carlo method,

1. Itis based on the source-biasing and weight winihe independent variables are sampled faiif), which
dow techniques, which are statistically stable and genefs not necessarily the best pdf from which to sample. An

ally applicable. alternative pdf§(P) can be introduced into the integral
2. ltdoes not in any way restrict the accuracy of theas follows:
explicit three-dimensional continuous energy and angu- v(P)q(P)
lar Monte Carlo method. = f G q(P)dP , (5)
P

3. Because of its practicality, stability, and general
applicability, this method may be used for complete auwhereq(P) = 0 and/p§(P) dP = 1.

tomation when coupled to a8 adjoint generator. From importance samplingthe alternative pdf(P)
4. The method requires little or no experience on théhat Will minimize the variance foR is then given by
part of the user. _ W(P)q(P)
This paper is organized as follows: The theory be- q(P) = : (6)
hind the CADIS method is presented in Sec. Il. The im- f vT(P)q(P)dP
P

plementation of this method into MCNP is described

in Sec. lll. Analysis related to the application and com-¢ {he final resultR is known, then the Monte Carlo in-
putational benefits of the CADIS method for & one-eqration will returnR with zero variance. However, in
dimensional test problem and a real-world application arg = tice. the adjoint function is not known exacRgan-
discussed in Sec. IV. The effect of adjoint energy and, e solved for by direct integration, and thus, it is nec-

_spgtlal 3c%ura<_:y o\r/1| calculational eff:;:gzncy IS exalm'_”e ssary to simulate the particle transport. For this process,
In Sec. V. Section VI summarizes and draws conclusiong is gesirable to use the biased source distribution in

on this_work, and finally, recent developments are r€Eq. (6) that, in the limit of an exact adjoint, leads to a
ported in Sec. VII. zero-variance solution.
Examining Eq.(6) reveals that the numerator is the
Il. THEORY detector response from phase-spRcand the denomi-
nator is the total detector resporiRelherefore, the ratio
Problems that can be solved by the Monte Carlds a measure of the contribution from phase-spade
method are essentially equivalent to integratibfer ex-  the detector response. Intuitively, it is useful to bias the
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190 WAGNER and HAGHIGHAT

sampling of source particles by the ratio of their contri-or

bution to the detector response, and therefore, this ex- .

pression could also be derived from physical argumentsti,(P) _ fK(P’ N P)@(P’)[ v(P) ]dP’ +q(P)
Because the source variables are sampled from a bi- vT(pP) '

ased pdf, the statistical weight of the source particles must

be corrected according to E@L) such that

W(P)§(P) = Woa(P) , ()

13

This transformed equation can be written as

whereW, is the unbiased particle starting weight, which ~ V(P) = IK(P' - P)¥(P)dP' +q(P) , (14
is set equal to 1. Substituting E¢6) into Eq. (7) and

rearranging, we obtain the following expression for thgyhere

statistical weight of the particles:

., vT(P)
q
R
W(P) = == v(P) = Yip) (8 BecauseK (P’ — P) is not known, we simulate the

particle transport between events in the norrat-

This equation shows an inverse relationship between tﬁgased way and alter the number of particles emerging

S i rpting .
adjoint (importance function and the statistical weight. |1 P from an eventirP’ by the ratiol” (P)/¥"(P"), which
Previous worf in this area assumed this relationship's the ratio of importances. This adjustment to the trans-

and showed it to be near optimal, and others have ver](f"r kernel can be accomplished through particle creation

fied this relationship through computational analy<i& and termination, such that
However, in this work, beginning with importance sam- t
. . Importance. vi(P)
pling, we have derivednot assumeqthis relationship.  for NRIT
To consider the transport process, we examine the (P")
integral Boltzmann transport equation for particle den- (16)
sity in the phase-spad® given by

> 1, particles are creatddplitting) ,

and

¥ (P) = fK(P’—>P)\If(P’)dP’ +aP) . @ vT(P)
vi(P")
whereK(P' — P) dPis the expected number of particles (17)

emerging indP aboutP from an event irP’, andq(P) is ) )
the source density. To transform H8) to be in terms of Because we are altering the number of particles emerg-

<1, particles are destroydtbulette .

the biased source distributi@{P), we multiply it by ing from an event, the statistical weight of the particles
must be corrected according to the conservation relation
vT(P) of Eq. (1) such that
(10)
t vi(P)
v'(P)q(P)dP W(PIK(P' = P)| Ly | = WPIK(P = P)
and define (18
. ¥ (P)¥'(P) or
v (P) = (11) \I/T(P')
T — ’
f v'(P)q(P) dP W(P) = W(P') 75, (19
to yield the following transformed equation: While the development of the equations is based on

the concept of zero variance, a zero variance cannot be
R attained with estimation at particle everisg., colli-
v (P) = IK(P' — P)¥(P') dP’ sion, boundary crossings, ethecause the number of
events is itself a random variable and contributes to the
vi(P) variance of the final result. However, reduced variance
+q(P) , (12)  (even zero-variance solutions in the lijrian be achieved
fWT(p)q(p) dpP when every samplingsource and transpgris made pro-
portional to its importance.
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AUTOMATED MONTE CARLO VARIANCE REDUCTION 191

To administer the splitting and rouletting of parti- vided by the biased probability according to Ef. Thus,
cles, we use the weight window technique available withirthe total weight of particles started in any given interval
MCNP, which deals with particle weights. We have re-is conserved, and an unbiased estimate is preserved.
lated the weights to particle importance via E@.and The source energy and position are sampled from the
(19). Because these relationships for the particle statisollowing biased source distribution
tical weights, which are used in source sampling and the

particle transport process, were derived from impor- 4(r,E) = $'(r,E)q(r,E)
tance sampling in a consistent manner, we refer to the ' .
use of the relations as consistent adjoint driven impor- , E¢ (r,E)q(r,E)drdE

tance samplingCADIS).
T(r,E)q(r,E
Il ;q( ) 1
I1l. IMPLEMENTATION INTO MCNP
To calculate the source-biasing parameters from this
In Sec. II, we defined expressions for the sourcelelation, it is necessary to couple taeadjomt_ fu_nctlon
biasing parameters and weight window lower bound nd the forward Monte Carlo problem description. Phys-
based on the adjoirtmportance function. In this sec- ically, the numerator is the detector response from space-

tion, we describe how this information is used within €n€rgy elemertdr,dE), and the denominator is the total

MCNP, and we discuss the related difficulties and issue&l&t€ctor respons Therefore, the ratio is a measure of
the relative contribution to the detector response.

I1lLA. Calculation of Variance Reduction Parameters o
I11LA.2. Transport Biasing

To calculate source-biasing parameters over the ) ] ) )
phase_spacgpace, energy, and anglme source from ] AS men“oned,the We|ght W|nd0W, as |mp|emented
the forward calculation is coupled with the adjoint func-in the MCNP code, is a space- and energy-dependent tech-
tion as shown in Eq(6). Further, the particle transport is Nique by which splittingroulette are applied. The weight
biased via Eqs(8) and(19). window technique provides an alternative to geometric

The space-, energy-, and angular-dependent adjoiﬁpllttlng/roulette and energy splittifgoulette for assign-
function may require a significant amount of storage, parlnd space- and energy-dependent importances. To use the
ticularly for large three-dimensional problems. Tg¢  Weight window technique within MCNP, we need to cal-
method can determine the scaangular-independerad- c_ulgte Wel_ght wmdpw Io_wer boundd such that the sta-
jointaccurately, butnot necessarily the angular-dependefigtical weights defined in Eq8) are at the center of the
adjoint because of the limited number of directions. Thereweight windows(intervals. The width of the interval is
fore, because of the memory requirements and inaccurgontrolled by the paramet€s,, which is the ratio of up-
cies ofthe angular-dependent adjoint, we use the space- aR@lr and lower weight window value€, = W,/W).

energy-dependeitscalay adjoint function Therefore, the space- and energy-dependent weight win-
dow lower bounds&\| are given by

$'(r,E) = j (1, E, Q) dO (20) . w R 1
4 \M(F,E) - (Cu + 1) - d)*(r,E) <Cu + l) ) (22)
for calculating space- and energy-dependent source- 2 2

biasing and weight window parameters. It should be noted, ) ) )

however, that the use of a less accurate adjompor- ~ and during the transport process, the weight window tech-
tance function may reduce the efﬁcienc(yvith respect nique _performs spllttlng or roulette in a manner consis-
to that from a very accurate adjoint functiobut does tent with Eq.(19).

not impact the accuracy of the Monte Carlo result. Itis important to note that because the source-biasing
parameters and weight window lower bounds are con-
II.A.1. Source Biasing sistent, the statistical weights of the source particles

[W(r,E) = q(r,E)/q(r,E)] are within the weight win-

Source biasing allows the simulation of a largerdows as desired. Moreover, if the statistical weights of
number of source particles, with appropriately reducedhe source particles are not within the weight windows,
weights, in the more important regions of each variabléhe particles will immediately be split or rouletted in an
(e.g., space, energy, and angl€his technique consists effort to bring their weights into the weight windowis.
of sampling the source from a bias@tbnanalog prob-  This will result in unnecessary splittiigpuletting and a
ability distribution rather than from the tryanalog prob-  corresponding degradation in computational efficiency.
ability distribution and then correcting the weight of the For problems in which the adjoint function varies signif-
source particles by the ratio of the actual probability di-icantly within the source regiofspace angor energy,
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192 WAGNER and HAGHIGHAT

this coupling between source and transport biasing i®rences in the weight scored by individual particles are
critical. possible. Additionalmore frequentweight checking has
two competing effectsia) There is a computational cost
or penalty each time the weight is checked, and this pen-
alty is the time required by the searching routines to de-
The general version of MCNP provides facilities for':egg'gﬁi?: rlg'lsl?ocl) é?g&%ﬁgg;?&?ﬁ;?ﬁﬁ: cVIZiIIEgTeV;QESCh
energy- and cell-dependent weight windows. This MeANs more reliable results with well-behaved statistical con-

that in order to use a fine spatial weight window grid o .
(which is necessary in optically thick regionsith the "¢ 9ence- Therefore, itis clear that we need to determine
criterion for an optimum or near-optimum compromise

standard version of MCNP, the user must subdivide th%‘}or checking particle statistical weights. Moreover, it is
MCNP-cell-based geometry such that the ratio of impor'gesirable tl?atpthis criterion be prob?em Iindepende’nt
tances between adjacent geometric cells is not too large: TS . X '

; : L In deterministic methods, the spatial domain of the
Because the importance ratios are not a priori known o : ; e . :
this geometric discretization is not straightforward ancFroblem is discretized into relatively fine spatial meshes

typically requires iterations of manual adjustments. Furﬁ%ifgzmgrghnecgsp{ﬁﬁgnfggg :\ftizil)ﬂeaslh?srxig\{ebz :’r';g”
ther, the subdivision of the geometry into a very largeenoughto allow this apbroxin?atic(he the particle den-
number of cells is time-consuming and can actually de-. S S
grade the efficiency of the calculation. For these rea§Ity must not vary significantly within a mesh celBe-

sons, we use the determinisfigspatial mesh description cause the particle density varies with the material cross

to construct a separate, but related, geometric grid to f&CCHONS g_nd the correspolndmg rrregn free (mfpl)l_(t_h.e
cilitate the use of the adjoint distribution. This is done?verage istance a particle travels between colligions

with a modified version of the MCNP code that is able to-> cOMMonN practice to use mesh sizes of the order of

read the binary flux filéwhich contains the adjoint func- ghzraTt]ftF;]éoa?c?rse%ir:{;gaé?jr%%gg;(?r%%?izr??s r\llgtligccur and
tion and the spatial mesh and energy group information Analogously, in Monte Carlo methods the particle

o ;
from the standar@ DORT codé® and superimpose the I§tatistical weight has been related to the adjoint function

variable spatial mesh and ener rid onto the MCN 9 . .
problem ir?a manner transpare?l%/tg the user. This grigq' (8)], which is also directly related to the material

I11.B. Integration of Importance Function into MCNP

enables the use of the space- and energy-dependent i SUF (S X 208 0 S BETREEE S D Y
portance function and does not directly affect the trans: ' 9 P

port of particles. At various events in a particle historycou's'ons’ itis a logical, problem-independent parameter

(e.g., collisions, surface crossings, dadincrements of by which particle statistical weight can be controlled.

S . Therefore, during particle transport, the distance to col-
mean free path the grid is searched to determine the'sion is determined as before, but this distance is now

importance of the phase-space within which the particl . > C
respides The imporptance ispthen compared to thepstatis ompared to the mfp. If the distance to collision exceeds
: e user-defined mfp increment, the particle is trans-

cal weight of the particle and the appropriate action Iported the distance of that increment, and the statistical

taken(e.g., splitting, Russian roulette, or no actioh o . - .
shoulé bg note-:‘d thgt with the cell-based weight vt\)/indow eight is compared to the weight window boundaries for
at region. Parametric studies analyzing the effect of the

:Eéhii S;fgf?féﬂi\!gés'on of MCNP, additional spatial searc increment of mfp on problem efficiency and reliability
Currently, the level of detail of the energy-dependenfjlre deferred to Sec. IV.

mportance funcion i cictted by the muigroup - 102 5SS S5UE o Soncer o 0 ot o o
brary used for th&y adjoint calculatior(i.e., all groups 9 P gnt.

are usegl The effect on the calculational efficiency of The computational penalty in the Monte Carlo calcula-

: S : tion for using larger numbers of spatial meshes or energy
using fewer groups is discussed in Sec. V. groups is related to the search routine. For the binary

searchwhich is currently being usedthe average num-
[11.C. Weight Checking ber of comparisons in a successful search, assuming that
each of theN intervals is equally likely, i€
Various concepts for minimizing the amount of com-

putational overhead associated with this process have been
examined. The firstissue of concern is the determination
of the appropriate occasidor evenj to check the par-
ticle’s statistical weight. Because the MCNP geometrylhe behavior is demonstrated in Table 1. While in our
does not need to be manually subdivided to assign thgroblem each interval is not equally likely, the behavior
spatial importances, the presently available weight checlis similar. Thus, the computational cost associated with
(i.e., at collisions and surface crossingse no longer increasing the number of intervals is a slowly increasing
sufficient to control particle weight, and thus, large dif-function (i.e., < log,) of the number of intervals.

log>(N) + 2 B

CN = |092(N) + N

1. (23
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TABLE | adjoint distribution for a few representative energy groups
Relationship Between Number of Intervals and shows that the importance of each energy group varies
and Number of Comparisons by several orders of magnitude within the slab. Figure 1
also shows that while the slopes of the adjoints are sim-
Average Number ilar for this problem, they vary significantly in magnitude.
Number of Intervals of Comparisons For performance analysis, the test problem was run
(a) without any variance reduction techniques beyond the
2 1.50 default (in MCNP) implicit capture and(b) with the
10 2.85 CADIS method in the modified version of MCNP for the
188 g';g purpose of variance reduction. Each case was allowed to
1000 898 run for 30 CPU-min on an IBM RISZ5000 model 370
computer.

If the Central Limit Theorem is valid, the estimated
relative error squareB? should be proportional to/N.
IV. APPLICATION AND ANALYSIS Also, the computer tim&@ used in a Monte Carlo calcu-
lation should be directly proportional f8 (the number
of histories; therefore R?T should be approximately con-
stant. Because in a Monte Carlo calculation it is desir-
For verification of implementation and performanceable to minimizeR andT, the calculational efficiency is
testing, a simple one-dimensional test problem was dejuantified in terms of the figure of mefitFOM):
veloped. This problem is defined as a 150-cm slab of or-
dinary concrete with a fission source on the left-hand FOM = 1
surface. The objective is to calculate the neutron tissue R2T
dose on the right-hand side of the slab.
To accelerate the Monte Carlo calculation, a oneTherefore, the FOM will be used throughout this paper
dimensional adjoint distribution was calculated using théor comparisons of calculational efficiency.
DORT code with the SAILOAP; 47-group library** The The results of these calculations are listed in Table Il
deterministic model was constructed with 60 spatiabnd demonstrate that the CADIS method improves the
meshes, eack 1 mfp or 2.5 cm thick. Figure 1 plots the efficiency of this calculation by a factor 6f2000 with

IV.A. One-Dimensional Test Problem

T 1 |l T T T T /.

le+26 | A

le+24 |
= -
g
5
g
Toles22 |
g
o
=)
< »

- .
le+20 |
group 1 (1.73E+01 - 1.42E+01 MeV) ——

i group 10 (3.01E+00 - 2.73E+00 MeV) ----- i
group 20 (8.21E-01 - 7.43E-01 MeV) ------
group 30 (3.18E-02 - 2.61E-02 MeV) -

A group 40 (1.01E-04 - 3.73E-05 MeV) -~
le+18 |/ .
. 1 1 : 1 L 1 \ 1
0 20 40 60 80 100 120 140

Distance (cm)

Fig. 1. Adjoint distributions in one-dimensional test problem.
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TABLE 11
Results of One-Dimensional Test Calculations
Number of Dose
Description Historiest (rem/h) R° VOV FOM
MCNP 2.8E+5° 1.52E-12 0.874 0.9945 0.044
MCNP with CADIS 5.5E+4 1.36E-12 0.019 0.0023 91

aFor 30 min of CPU time.
PR = relative error.
‘Read as 2.8 10°.

respect to the normal MCNP calculation. Practically, thisnents of mfp for the one-dimensional test problem. In
means that the analog calculation would requit4¢3.7  this simple one-dimensional example, both parameters
CPU-days to reach the statistical precision of the CADISollow expected behavior and peak at the same location.
results(obtained in 30 CPU-min It is important to note that the peaks for both the FOM
As mentioned, parametric studies to analyze the efand FOR correspond to a mfp increment of 0.8, which is
fect of the increment of mfp on problem efficiency andnear unity.
reliability have been performed. The FOM is used as the
measure of efficiency, while the figure of reliabilfy
(FOR) is used as a measure of reliability and is calcu-
lated as follows:

IV.B. Reactor Cavity Dosimetry Calculation

This problem addresses a major concern of nuclear
utilities. The life of a reactor and its possible extension
are directly limited by the embrittlement of the reactor
pressure vess€RPV), a low-carbon steel container sur-
rounding the reactor core, under neutron irradiation. The
where VOV is the variance of the variance. Figure 2 showsembrittlement of the RPV material is primarily due to
the behavior of the FOM and FOR with varying incre-the bombardment of neutrons with energies greater than

FOR=Now)T

120 T T
i Figilre-Of-Merit ——
/*’/H Figure-Of-Reliability -+--
100
80 | e /f ............................ kY — e - .
E // \\\\
5
? e e . f.\; ........... SRR SR S -
= / N\
: ’ | \\
40 Feede // ...... Y e S S \
20 e .
0 "', I \E'L -
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Increment of mfp checking

Fig. 2. Figure of merit and figure of reliability versus increment of mfp checking for one-dimensional test problem.
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~1 MeV and cannot be directly determined from meadistical uncertainties. As the neutrons travel outward in
sured quantities. Radiation detectors are employed to préke radial direction from the core periphef¥70 cm,
vide data by which calculational methgasodels can be they encounter the core bar(dl79 to 184 cny, the ther-
validated. Often the dosimeter is outside the RPV, in whatnal shield(187 to 192 cny, the RPV(217 to 239 cm,
is referred to as the cavity; hence it is called cavity dothe cavity region(239 to 350 cny, and finally the cavity
simetry. The cavity dosimetry calculations attempt to esdosimeter(350 cm).
timate high-energy=1.0/MeV) reaction rates in a small Without the use of variance reduction techniques, one
volume at a distance 0f350 cm from the core center- could allow MCNP to run this problem continuously for
line and are used to validate methgdsdels that are weeks and still not obtain statistically significareliable
subsequently used to estimate RPV integrity and provideesults. In an effort to quantify the previous statement,
a basis for plant life extension. The problem is illustratedhis problem was modeled without the use of any vari-
in Fig. 3, which shows one octant of the Three Mile Is-ance reduction techniques, except for the energy cutoff,
land Unit 1(TMI-1) reactor. In the past, th§, method and allowed to run for an extensive amount of time. Af-
was used, almost exclusively, to perform these calculaer simulating 100 million particle histories at a cost of
tions. More recently, the Monte Carlo method has been-50 h of CPU time, the ex-vessel cavity dosimeter tal-
employed in an effort to better understand the uncertairies did not receive even a single particle sc@re., not
ties associated with th&, method and to attempt to val- one of the 100 million particles made it to the ex-vessel
idate S calculations*?=44 cavity dosimeter Based on the formulation for FOM,
Because of the computational expense, the Montee may approximate the amount of computer time nec-
Carlo method is typically not used for such a large deepessary to achieve a desired precision. From this, we find
penetration—type problem. Figure 4 shows the radial fluxhat it would require~1.2 X 10° min, or ~2.3 yr, of
distributions from the core periphery to the cavity do-computer time to achieve a relative error of 5%. Hence,
simeter for several energy groups and demonstrates thiais clear that variance reduction techniques are essential
the flux decreases by 5 orders of magnitude over this to achieving statistically meaningful results for an appli-
range. The error bars on this figure correspondastia-  cation of this type.

ballle plate

former
I:I air corc barrel

waler gap

I:I low density stecl thermal shicld
downcomer

pressure vessel

cavity
dosimeter

aluminum
cavity

mirror insulation

cavity

TMI— 1 concrete shield

Fig. 3. One octant of the TMI-1 reactor.

NUCLEAR SCIENCE AND ENGINEERING VOL. 128 FEB. 1998



196 WAGNER and HAGHIGHAT

le+12 T T T T T T T T T

le+11

le+10 [

1e+09 F

1e+08 F

Neutron Flux (n/cm”2/sec)

1e+07 |

1e+06 |

1 M| 1 1 1 1 1 1 1

180 200 220 240 260 280 300 320 340
Radial Distance (cm)

Fig. 4. Radial group flux distributions in the TMI-1 reactor.

IV.B.1. Application of Existing Variance cell importances and were subsequently used to refine
Reduction Methods the cell importances in an effort to maintain a relatively
. _constant neutron density in the direction of the cavity do-
pIerr?grfm?erg itrk:g %A’Aé?\:g mit?ggcrg?ig\(/ai;/f?cfg%;?? (':rgl:simeter. A_ftgr several iterations and _mo_difications to the
culation was manuall ’0 timized with existi . cell descriptions, a reasonable spatial importance func-
: y optimized With €xISting variance;,, \yas obtained in the direction of the cavity dosim-
reduction method$? This manual optimization is now

briefly described and will be used as a reference for evafter' The modifications to cell descriptions evolved from
uating the CADIS method. he desire to maintain reasonably small splitting ratios

MCNP (version 44 offers several variance reduc- and thus consisted of decreasing the size of optically thick

tion techni that ar licable 1o th vity d im(:eIIs by dividing them into multiple cells of smaller ra-
on techniques that are applicable to the cavity 00SIMg;- 1hickness. The cell subdivision resulted in a factor

etry calculation. The techniques chosen for this applicatiogf ~12 increase in the number of cells in the problem
include energy cutoff, source biasing, weight windowsdescrilotion

and the exponential transformation. As the focus of the The geometric splitting parameters were then used

Cﬁlcucliartlcl)nti{/s an hv'\?h'ﬁin?rgy rt\r?utrﬁnrs thatth?r\cs exper&s a starting point for the weight window generator to
enced relatively Tew collisions, thé energy cutolfwas use eratively develop a spatial importance distribution for

to kill all particles with energies below 1 MeV, and the : :
o2 ; two energy groups. This process was extremely tedious
MCNP default implicit capture was turned off. Sourceand required a considerable amount of CPU time for the

biasing was used to start more particles with high ene(/'veight window generator runs, many iterations of sig-

gies and desirable directions, and the source from the i'?ﬁficant smoothing and adjusting of the weight window

ner assemblies was neglect&dNeight windows were : :
used to describe the spatial- and energy-dependent ivglues, and a great deal of physical understanding. The

ortance of the particles and to control particle weiah anual process of optimization was continued until the
P P p 9MYesired level of efficiency was achievéce., additional

fluctuations, and finally, the exponential transformation, < \vere no longer productiyevith stable statistical
technique was employed in the steel regions to stret bhavior

the distance between collisions in the direction of interest.

N Initially,_ge_zometric splittin_g values base_d on intu- IV.B.2. Application of CADIS

ition and a limited understanding of the physical system

were used to perform some preliminary MCNP runs. The  For this application, th&*Cu(n,«), *®Ni(n, p), and
results of these runs created a better understanding of tPEe(n, p) reaction rategresponseswhich have threshold
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energies 0f~5.0,~1.0, and~1.0 MeV, respectively, are ing approximationgassumptions are made in this pro-
all of equal interest, and thus we calculate an effectiveess:(a) The axial behavior for the adjoint function is
response functiofshown in Fig. 5 as a normalized sum approximated with a cosine distribution, atig to rep-
of each of the normalized response functions. Using thisesent the spatial dependence of the energy-biasing
effective response function, we can generate an impoparameters, the energy-dependent adjoint function is
tance function that will simultaneously optimize the cal-averaged over each user-defined spatial source cell, and
culation for all three reaction rates and thus avoida dependent source-energy—biasing distribution is calcu-
calculating an importance function for each individuallated for each source cell. For this particular application,
response that would require three separate Monte Carkmach assembly has an associated source-energy—biasing
calculations. distribution. No modifications to the source routines are
With this effective response function as the adjointnecessary because the capabilities to handle source vari-
source, a two-dimension&-6 adjoint function is calcu- able biasing and dependent source distributions are stan-
lated with the DORT cod¥ using the SAILOR 47-group dard features of the MCNP code.
library and a symmetri€ quadrature set. Figure 6 shows Because the focus of this work is on the automatic
this adjoint function distribution for energy groug$.00  variance reduction for the calculation and not on the cal-
to 12.14 Me\). The modified version of MCNP reads culation itself, the interested reader is referred to Refs.
the adjoint function from the standard DORT binary flux42 and 43 for discussions regarding the accuracy of re-
file, couples the original source distributions with the ad-sults with respect to measurements &dalculations,
joint function to generate the source-biasing parameteras well as sensitivity studies related to various aspects of
and weight window lower bounds, and then performs thehis calculation. However, to provide some idea about
transport calculation. Th&, spatial mesh that is used the accuracy and to demonstrate that the automatic vari-
within MCNP to define the spatial importance distribu-ance reduction technique does not bias the calculation,
tion is shown in Fig. 7. Within MCNP, the source spatialcalculated-to-experimentéC/E) ratios, corresponding
distribution is represented by a probability distributionto ENDF/B-V material and SAILOR dosimetry cross sec-
function at 24 axial locations in each fuel pin of the lasttions, are given in Table Ill. The differences betweeteC
two (peripheral layers of assemblies, and the energy distatios calculated with the manually optimized model and
tribution is based on an equivalent fission spectrum fowith the automatic variance reduction method are con-
the uranium and plutonium fissile isotop®sThe follow-  sistent with the statistical uncertainties.

0.3 T T T T T L 1 T
Cu-63(n,a)
025 4
. 02 5 .
8 ;
g
o
s | e
3
~
] 0.15 4
Q
S
=
E .
A R v normalized sum
0.1 F et e
~~~~~~ Fe-56(n,p)
0.05 Ni-58(n,p) 1
O - [ 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Energy (MeV)

Fig. 5. Response functions.
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Fig. 6. Adjoint function distribution for energy group(20.00 to 12.14 MeY.

can be shown to increase the calculational efficiency by
a factor of~10* with respect to the analog case.

With the use of the automatic variance reduction In an effort to evaluate the use of the effective re-
method, the computer time required by the MCNP modetponse function, automatic variance reduction calcula-
to calculate the reaction rates at the ex-vessel cavity déions were also performed for each individual response
simeter with Ir uncertainties 0&3%is~1honanIBM function separatelyi.e., an adjoint calculation was per-
RISC/6000 model 370. To reach the same precisB%) formed with each response function and used in individ-
with the manually optimized model requires nearly 5 hual MCNP calculations Table IV lists the FOM values
of CPU time. This behavior is demonstrated in Fig. 8for these calculations. The use of individual adjoint func-
which plots relative errofR) versus computer time for tions is shown to increase the efficiency by a factor of
the three reaction rates of interest. Also included in-7 with respect to the single manually optimized impor-
Fig. 8 is a curve representing the ideal behawRor,1/VT.  tance function and by-35% with respect to the adjoint
The two sets of curves in Fig. 8 correspond to calculafunction with an effective response function. The use of
tions performed with different variance reduction ap-the individual response functions required two more
proaches, namely manually optimized variance reductioBORT and MCNP calculations than the use of a single
[including energy cutoff, source biasing, weight win-effective response function. Considering the CPU time
dows(2 energy groups and the exponential transforma- for these additional calculations, the use of an effective
tion; see Ref. 43 for detailsand the automatic variance response function is actually more efficient for this
reduction derived from a two-dimensional adjoint func-problem.
tion distribution(18 energy groupsusing the effective It should be noted that the aforementioned CPU times
response function. do not include theS adjoint calculation. Also, for the

Table 11l lists the FOM value$FOM = 1/(R)?T]  purpose of comparison, the synthesized three-dimensional
and reveals that the use of the automatic variance redudeterministic resultggroup fluxes for energies greater
tion increases the calculational efficiency by a factor othan~1 MeV) can be produced by two two-dimensional
>4 with respect to our best manually optimized modeblnd one one-dimensional calculations that requife25,
(note that the observed increase in efficiency is deper®.25, and 0.005 h of CPU time, respectively, on an IBM
dent upon the quality and detail of the manual optimizaRISC/6000 model 370. The CPU time required for the
tion). Further, the use of the automatic variance reductiosynthesis process is essentially negligible. Thus, group

IV.B.3. Comparison of Calculational Efficiency
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Fig. 7. Sy spatial mesh used to facilitate the spatial importance distribution.

fluxes over the entire spatial domain can be generated byomputational time spent in the spatial searching routine
DORT in <1 CPU-h. as a function of the increment of mfp are plotted in

Figure 9 shows the behavior of the FOM with vary-Fig. 10. This figure demonstrates that for an increment
ing increments of mfp for the three-dimensional reactoiof mfp near unity,~24% of the total computational time
cavity dosimetry calculation using th¥@Ni(n,p) re- is spent processing the weight windows, an@i0% of
sponse function and demonstrates the appropriateness ahe total time is spent in the spatial portion of the weight
problem independence of using a value near unity for thehecking alone. This result has motivated attempts to de-
increment of mfp parameter. velop more clever search routines. However, no signifi-

To provide an indication of the computational pen-cant gains have been achieved. Based on the results shown
alty associated with weight checking, the percentage dh Figs. 2, 9, and 10, the default value for the increment
total time spent processing the weight windows and totabf mfp is unity.

IV.B.4. Comparison of Calculational Reliability

TABLE 1l One potential problem associated with the intense use
Calculated-to-Experimental Ratios at the Cavity of variance reduction techniques is erratic or unreliable
Dosimeter for TMI-1 error estimations. Figure 8 shows that the relative error

follows the expected behavior predicted by the Central
Automatic Variance Limit Theorem(R ~ 1/VN ~ 1/4/T, whereN is the num-

Manually Optimized Reduction ber of particle historigs which provides some indica-
) tion about the validity of the estimated relative errors.
Reaction QE FOM C/E FOM The use of the automatic variance reduction method ap-

63 a b pears to lead to smoother statistical convergence. All three
54,%((,?’%) 8'8238'833 g; 8'8228'828 %g Eg% reaction rate tallies pass all ten of the MCNP statistical
S8Ni(n,p) | 0.947(0.020 | 4.5 | 0.9520.019 |22 (4.9) Egtelglglscg:]c\)/\g%r;%?g additional indication of proper sta-
314 uncertainties. To fu_rth_er assess the estimated_uncertainties, the man-
bRatio of “Automatic Variance Reduction” and “Manually ually optimized and automatic variance reduction cases
Optimized” FOMs. were each run ten times with different starting random
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Fig. 8. Relative error versus computer time.

number seeds. This allows us to compare the relative eestimated by>20% in the automatic variance reduction
ror as estimated by MCNP to the relative standard devicase. In other words, the estimated relative errors from
ation of the calculated mearieeaction ratesfrom the the automatic variance reduction case are more conser-
multiple runs. The number of histories was chosen sucthative than those from the manually optimized case.
that both cases would yield simil&s; the manually op- For a normal distribution, the calculated value should
timized and automatic variance reduction cases requirdgk within the b relative error 68% of the time. For our

20 X 10° and 3 X 10° particle histories, respectively. ten runs(with three reaction rates per ryrthe calcu-
Table V compares the calculated relative standard deviated values are observed to be within thergélative er-
ations to the averageMCNP) estimated relative errors ror 57% of the time for the manually optimized case and
and reveals that the relative error is underestimated by &% of the time for the automatic variance reduction case.
much as 20% in the manually optimized case and ovetn addition, the standard deviation of the estimated rel-

ative errors and the estimated VOV’s are a factor-&
less in the automatic variance reduction case than in the

manually optimized case. These results clearly demon-
TABLE IV strate that the automatic variance reduction method pro-
Effect of Response Functions on FOMs at the Cavity ~duces reliablgconservative error estimations.
Dosimeter for TMI-1

Effective Response | Individual Response V. EFFECT OF ADJOINT ACCURACY
Function Function

Reaction CE FOM C/E

The effectiveness of an adjoifimportance func-
FOM tion for variance reduction of Monte Carlo calculations
25 (6.8)° is dictated by its accuracy. It is for this reason that we

63Cu(n, ) |0.8780.0222|16 (4.3|0.8820.0192
S4Fe(n, p) [0.9640.020 |20 (5.7) [0.9530.016

28(8.0) use an accurate method—t8g method—to calculate
58Ni (n, p) [0.9520.019 |22 (4.9) [0.9230.015 [30(6.7) the adjoint function. Hovyever, for extr(_amely_large pr_ob_-
lems and for the extension to three-dimensional adjoint
a1 uncertainties.

functions, the memory and disk space requirements for
bRatio of “Automatic Variance Reduction” and “Manually the Sy adjoint calculations can become prohibitive. One
Optimized” FOMs.

way to alleviate this problem is to sacrifice some of the
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Fig. 9. Figure of merit versus increment of mfp checking for the reactor cavity calculation.

accuracy of the adjoint calculation through the use of :
fewer energy groups. However, the relationship between R= J f ¢'(r,E)q(r,E)dEAV, (24)
the accuracy of adjoint functions and their effectiveness VIE

for variance reduction of Monte Carlo calculations is prob- . ; :
i e nserved. This i n tting the integral It
lem dependent and is not well known. Therefore, in thi s conserved s is done by setting the integral equal to

. ) . X : She product of the adjoint function and the source in coarse
section we investigate the effectiveness of importanc

functions with varying degrees of energy- and spatial-ﬁroulog:
dependent accuracy.

fdﬁ(r,E)q(r,E)dE: b(r)aq(r) (25
V.A. Energy Dependence g

To examine the effect of using an adjoint functionwhere we define the coarse-group source and adjoint by
with varying numbers of energy groups, one of the fol-

lowing two approaches may be employed) collapse

an appropriate multigroup library into various libraries Qg = IQ(r, E)dE
with fewer groups and use these libraries to calculate ad- g

joint functions or(b) calculate the adjoint function for a

given number of maximum groups and collapse it into

various coarse-group structures. In this study, we have

chosen the second approach because it does not require fq&*(r, E)q(r,E) dE
the generation of additional multigroup libraries and sub- bf = g (26)
sequentS, calculations, and it uses an accurate impor- 9 Jg

tance function as its starting point. In other words, this

method eliminates concerns related to the selection of This procedure formally preserves the total response
multigroup boundaries for the cross-section collapsingnd leads to the definition of a coarse-group adjoint
procedure; specifically, the effect of their selection onthrough source weighting. Because of the source weight-

the accuracy of th&, solution. ing, these relations are only applicable within the source
To collapse an adjoint function into fewer groups, itregion.

is necessary to introduce group quantities such that the However, for this study, it is necessary to collapse
total respons&, the adjoint throughout the problem; i.e., including regions
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Fig. 10. Searching time versus increment of mfp checking for the reactor cavity calculation.

outside the source regi¢s). To do this, itis necessary to and
conserve the response from each spatial region. Because

the forward flux in a spatial region can be considered to N

be the source of particles within that region, it may be f¢ (r.B)¢(r,E)dE

used to weight the adjoint in the collapsing procedure. b4 = g ) (28)
Replacing the source term with the forward flux in the bg

preceding relations yields
A computer program was written to read the DORT
+ _ binary flux files from forward and adjoint calculations,
L¢ (NE)$(r,B) dB = ¢(r)bg(1) @7 perform the collapse as just discussed, and generate a
collapsed adjoint binary flux file in the same format. This
allows the current modified version of MCNP to read and
utilize the various collapsed adjoint functions without ad-
g = f¢>(r,E)dE ditional modifications.
g

where we define the coarse-group flux and adjoint by

TABLE V
Comparison of Estimated Relative Errors and Calculated Relative Standard Deviations at the Cavity Dosimeter

Manually Optimized Automatic Variance Reduction
Average Calculated Relative Average Calculated Relative
Reaction Estimatedr® Standard Deviatidh Ratio EstimatedR?® Standard Deviatidh Ratio
83Cu(n,a) 0.0229 0.0198 0.86 0.0223 0.0178 0.79p
54Fe(n, p) 0.0203 0.0243 1.20 0.0197 0.0132 0.66pB
58Ni(n, p) 0.0181 0.0200 1.10 0.0189 0.0142 0.75p

aRefers to the average of the relative errors estimated by MCNP in the ten runs.
bRefers to the relative standard deviation of the calculated reaction rates in the ten runs.
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V.A.1. One-Dimensional Test Problem ber of energy groups is not represented. In general,
Fig. 13 shows diminishing increases in efficiency with

To evaluate this collapsing procedure and sublarger numbers of energy groufiseyond~20 groups.
sequently the effectiveness of a coarse-group adjoirft" €xample, while the maximum increase in efficiency
function for variance reduction of the aforementioned oneWith respect to the unbiased case-i2000, the increase
dimensional concrete slab problem, the original 474N efficiency associated with using a collapsed 2-group
adjoint functions. The coarse-group boundaries are a sulfint with few energy groupé~2 to 5 groupsis capable
set of the fine-group boundaries, and each coarse grod increasing the calculational efficiency by approxi-
contains the same number of fine groupscept for the Mately half as much as the adjoint with 47 groups.
last group because the ratio of the number of fine groups
and the number of coarse groups is not an intedear
example, in the 12-group structure, the highest energy ~ V.A.2. Reactor Cavity Dosimetry Calculation
group contains the highest four groups of the 47-group
structure. For analysis wth this problem, the 18-gro(gmergy

With these collapsed adjoint functions, MCNP cal-groups above 1 MeYadjoint is collapsed into 9-, 6-, 3-,
culates source-biasing parameters and weight windo®-, and 1-group adjoint functions.
lower bounds. The effect of the collapse on the source- Figure 14 shows the relationship between the num-
biasing parameters is illustrated in Figs. 11 and 12.  ber of adjoint energy groups and the Monte Carlo calcu-

Figure 13 shows the relationship between the numkational efficiency in terms of FOM. The FOM values
ber of adjoint energy groups and the Monte Carlo calcuare normalized such that the highest value is unity. The
lational efficiency in terms of FOM. The FOM values figure demonstrates that for thé&~e(n, p) and®®Ni(n, p)
are normalized such that the highest value is unity. Theeaction rate calculations there is no benefit to using more
figure demonstrates that for this calculation there is somthan~9 groups, and relatively minor losses in efficiency
benefit to using 47 groups as opposed to 24 groups. Hovare associated with using fewer energy grodps., 2
ever, the benefit is very smdl-5%), and the increase in to 6 group$. On the other hand, because tR€u(n,a)
time required by th& calculation with twice the num- reaction rate calculation is sensitive to a rather narrow

l T v v ML T v T M M T v v T T T T M T T
47-group ——
0.1 24-group -----
12-group ------
0.01 [
§ 0001 |
g
g 0.0001 |
A
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D 1e-06 F
Q
5
& 1e-07 | —
o
] :
-Té 1e-08 | e :
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Fig. 11. Comparison of fine- and coarse-group source-biasing parameters.
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Fig. 12. Comparison of fine- and coarse-group source-biasing parameters.

energy rangé~6 to 12 MeV), larger losses in efficiency VI. SUMMARY

are observed when fewer energy groups are used.

Nevertheless, for this particular problem, an adjointwith A general method for automatically calculating and
few energy group$~3 groups is capable of increasing sing variance reduction parameters for Monte Carlo
the calculational efficiency to approximately half of theshielding calculations based on the space- and energy-
observed maximum, which is a factor 6f10* more ef-  gependeng, adjoint function has been developed and

ficient than the analog case. presented. The theory supporting the use of the adjoint
function for variance reduction of Monte Carlo calcula-
V.B. Spatial Dependence tions is based on the physical interpretation of the ad-

joint function. The equations for determining the source-

For solution using th&y method, as well as other biasing and weight window parameters were consistently
deterministic methods, the spatial domain is discretizederived from basic importance sampling with the adjoint
into spatial meshes to enable the approximation of spdunction as the weighting function, and thus, the method
tial derivatives with finite differences. Naturally, the ac-is referred to as CADIS, Consistent Adjoint Driven Im-
curacy of this approximation is dependent on the size giortance Sampling.
the spatial meshes. To examine the effect of gead- The CADIS method eliminates the manual process
joint mesh size on effectiveness for Monte Carlo vari-of selecting variance reduction parameters and thus can
ance reductionSy adjoint calculations with mesh sizes significantly reduce the amount of experience, time, and
ranging from 0.5 to 4 mfp’s were performed. These adeffort required for preparing and performing large Monte
joints were then used to accelerate Monte Carlo calculd@arlo calculations. In addition, because the determinis-
tions for the one-dimensional test problem. The effect ofic adjoint function is a far more accurate importance func-
the adjoint mesh size on Monte Carlo calculational effition than even an experienced variance reduction user is
ciency in terms of FOM is shown in Fig. 15. The FOM capable of creating, it is more efficient and reliable for
associated with mesh sizes as large as 4 mfp’s is showmriance reduction of Monte Carlo calculations.

to be~50% of the maximum observed val(®rrespond- This method is implemented into the general-purpose
ing to 0.5 mfp. Thus, the dependence of the FOM onMonte Carlo code MCNP. Currently, this modified ver-
mesh size is relatively minor for this problem. sion of MCNP is able t@¢a) read the adjoint function and
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Fig. 13. Effect of number of adjoint energy groups on FOM.
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Fig. 14. Effect of number of adjoint energy groups on FOM.
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Fig. 15. Effect of adjoint mesh size on FOM.
the variable spatial mesh and energy-group informa- VIl. RECENT DEVELOPMENTS

tion from a standar@®, code (DORT) binary flux file, o ) ) ]
(b) superimpose the variable spatial mesh and energy grid T he limitation of this type of approach is the require-
onto the MCNP problem(c) couple the original source ment for anSy adjoint _solutlon, which requires the user
distributions with the adjoint function to generate depent© be knowledgeable in both Monte Carlo and determin-
dent source-biasing parameters and weight window lowdptic methods, which is not often the case. To overcome
bounds, andd) perform the transport calculation using this difficulty, algorithms have been developed and im-
the constructed grids and calculated parameters. Variogéemented into MCNP for automatically generating in-
concepts for minimizing the amount of computationaPut files for Sy adjoint calculations directly from the
overhead associated with this process, such as when ¥CNP input, including mesh generation and material
check the weight and what searching schemes to use, ha¥@Ss-section preparation. This automation eliminates the
been examined. tedious process of manually generating these files and
The effectiveness of this method within the modi-requires very little experience on the part of the user with
fied version of MCNP has been verified through its apf€dard toSy adjoint calculations. o
plication to a realistic shielding calculation, namely the ~ The couplingto MCNP of these modificatiorta) the
reactor cavity dosimetry calculation. With the use of theutomatic generation of input files 6 adjoint calcula-
automatic variance reduction method, the efficiency ofions and(b) the automatic calculation and utilization of
the reaction rate calculation was shown to increase by‘@riance reduction parameters fr&padjoint functions,
factor of >4, and the statistical convergence was imf1as resulted in the complete automation of variance re-
proved with respect to our best manually optimized modep_lucfuon for MCNP shielding calculations. This will be the
Perhaps as important as its ability to increase the calcgubject of future papers.
lational efficiency is the fact that it does so in a way that
requires very little time or experience on the part of the ACKNOWLEDGMENTS
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