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Abstract –Although the Monte Carlo method is considered to be the most accurate method available for
solving radiation transport problems, its applicability is limited by its computational expense. Thus, bias-
ing techniques, which require intuition, guesswork, and iterations involving manual adjustments, are em-
ployed to make reactor shielding calculations feasible. To overcome this difficulty, we have developed a
method for using the SN adjoint function for automated variance reduction of Monte Carlo calculations
through source biasing and consistent transport biasing with the weight window technique. We describe
the implementation of this method into the standard production Monte Carlo code MCNP and its appli-
cation to a realistic calculation, namely, the reactor cavity dosimetry calculation. The computational
effectiveness of the method, as demonstrated through the increase in calculational efficiency, is demon-
strated and quantified. Important issues associated with this method and its efficient use are addressed
and analyzed. Additional benefits in terms of the reduction in time and effort required of the user are
difficult to quantify but are possibly as important as the computational efficiency. In general, the auto-
mated variance reduction method presented is capable of increases in computational performance on the
order of thousands, while at the same time significantly reducing the current requirements for user expe-
rience, time, and effort. Therefore, this method can substantially increase the applicability and reliability
of Monte Carlo for large, real-world shielding applications.

I. INTRODUCTION

In the field of nuclear engineering, deterministic~dis-
crete ordinates! and stochastic~Monte Carlo! methods
are most often used to solve shielding-type problems. As
one might expect, each method has its own strengths and
weaknesses. In general, Monte Carlo methods are more
accurate, but they require far greater computational re-
sources. This is particularly true for deep-penetration
shielding calculations involving attenuation of several or-
ders of magnitude. Despite the steady increase in avail-
able computational performance, unbiased or analog
Monte Carlo methods are not practical, or even possible,
for real reactor shielding applications. For these applica-
tions, either biased Monte Carlo methods or the discrete
ordinates~SN) method is used; however, the latter con-

tains uncertainties associated with the discretization of
the independent variables of the transport equation. In
this work, we take advantage of the strengths of both
methods and use them in a complementary manner. Spe-
cifically, we have developed a method for using theSN

adjoint function for automatic variance reduction of Monte
Carlo calculations through source biasing and consistent
transport biasing with the weight window technique.

I.A. Motivation

The Monte Carlo method is considered to be the most
accurate method presently available for solving radia-
tion transport problems. However, because of its very na-
ture of simulating individual particles and inferring the
average behavior of the particles in the system from the
average behavior of the individually simulated particles,
it is extremely expensive computationally. In fact, for
many reactor applications, as well as medical and nuclear-
well-logging applications, the computer time required by
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the analog Monte Carlo method is prohibitive and0or im-
practical. As a simple example, consider a problem in
which the transmission probability is 1028. If we assume
that 1000 particle histories can be simulated per second,
we can approximate that;6.7 3 105 min, or 1.3 yr, of
CPU time would be required to reach an acceptable 1s
statistical uncertainty of 5%. If we further assume that
we have exclusive access to a large enough number of
computer processors to achieve a factor of 100 speedup,
this calculation would still require nearly 5 days. There-
fore, for difficult shielding problems in which the prob-
ability is small that a particle will contribute to the detector
of interest, some form of variance reduction or biasing
must be applied. Herein, the expressionsvariance reduc-
tion and biasing refer to fair-game techniques used in
Monte Carlo calculations to reduce the computer time
required to obtain results of sufficient precision.

To make a difficult Monte Carlo shielding calcula-
tion computationally practical or, in most cases, possi-
ble, we employ our basic knowledge of the physics of
the problem and the available variance reduction tech-
niques to coerce important particles to contribute to the
quantity of interest~e.g., reaction rate, dose, etc.!. While
the application of variance reduction techniques is fairly
straightforward for simple one-dimensional problems, it
can be quite difficult for realistic problems, which are
often complex and three-dimensional. Thus, the shield-
ing analyst typically engages in an iterative process to
develop the variance reduction parameters and sub-
divide the geometry to facilitate the parameters, converg-
ing at some acceptable level of calculational efficiency.
Unfortunately, the appropriate variance reduction param-
eters vary significantly with problem type and objective.
Therefore, the iterative steps must be repeated to deter-
mine the variance reduction parameters for calculations
with different objectives~even for the same problem!.

A further difficulty lies in the statistical conver-
gence of the Monte Carlo results. For large, complex ap-
plications, it is not uncommon to spend days~and possibly
weeks, depending on the problem, the user’s experience,
and the desired precision! iterating and adjusting the vari-
ance reduction parameters, only to achieve reasonable ef-
ficiency with unstable statistical behavior. This unstable
statistical behavior is caused by improper use of the vari-
ance reduction methods~i.e., insufficient detail and0or
inappropriate selection of the parameters! and is usually
the result of undersampling some important region of the
problem phase-space.1 Further, this undersampling is
often difficult to identify and correct.

I.B. Review of the Literature

Over the past several decades, a large number of tech-
niques have been developed to reduce the variance or in-
crease the efficiency of Monte Carlo calculations.2–6These
techniques were formulated with the premise that the im-
portance of particles~important function! with respect

to the calculational objective was known. All of these
techniques modify the physical laws of radiation trans-
port in an attempt to sample more particles in regions of
the phase-space that contribute to the objective~i.e., de-
tector!. To compensate for this departure from the phys-
ical laws of radiation transport, the concept of particle
weight ~w! is introduced, where the weight can be con-
sidered as the number of particles being transported. When
a variance reduction technique is applied, the weight of
the particle is adjusted using the following “conserva-
tion” formula:

w @biased probability density function~pdf!#

5 w0 ~unbiased pdf! , ~1!

wherew0 is the weight before the variance reduction tech-
nique is applied. Therefore, nonanalog Monte Carlo is
acceptable~i.e., it produces correct, unbiased estimates!
as long as the particle weights are conserved. For exam-
ple, in the implicit capture technique, a particle always
survives a collision, but the particle emerges from the
collision with a weight that has been reduced by a factor
~ss0st !, which is the probability of scattering. Thus, the
total particle weight is conserved.

While some of these techniques, such as splitting0
roulette and implicit capture, have widespread applica-
bility, others, such as the exponential transformation and
forced collisions, have been developed for particular
classes of problems. Nevertheless, these techniques and
many others are available in the standard production
Monte Carlo codes, such as MCNP~Ref. 7!, MORSE
~Ref. 8!, MCBEND ~Ref. 9!, and TRIPOLI~Ref. 10!.

The biasing schemes for Monte Carlo particle trans-
port can be divided into three major categories: source
biasing, transport biasing~e.g., splitting0roulette and ex-
ponential transformation!, and collision biasing~e.g.,
discrete-angle biasing, forced collisions, and implicit cap-
ture!. As the names suggest, the three methods bias the
source-sampling, transport, and collision processes, re-
spectively. Of these methods, the transport-biasing method
of splitting0roulette has been the most important method
for increasing the efficiency of Monte Carlo calculations
in general.2,7

As mentioned, all of the techniques require problem-
specific parameters that are dependent on the impor-
tance of particles with respect to the objective function
and are therefore difficult to use. Booth and Hendricks11

state, “The selection@of parameters# is more art than sci-
ence, and typically, the user makes a few short trial runs
and uses the information these trials provide to better
guess the parameters; that is, the user learns to adjust pa-
rameters on the basis of previous experience.”

Responding to this difficulty, a number of strategies
for determining variance reduction parameters based on
the concept of learning were proposed and developed.
MacDonald13 demonstrated that through the use of pattern
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recognition techniques, the Monte Carlo splitting sur-
faces could be learned. The learning mechanics were quite
involved, and the method worked with very limited suc-
cess on complicated geometries. Deutsch and Carter13

showed that importances could be estimated at geometry
surfaces during a forward Monte Carlo calculation and
subsequently used to assist the analyst in manually se-
lecting the various variance reduction parameters. Gold-
stein and Greenspan14 developed a recursive Monte Carlo
~RMC! method for estimating the importance function
distribution. The method involved extensively subdivid-
ing the geometric regions and solving the forward prob-
lem for region importances with varying degrees of
accuracy. While this work was reasonably successful, it
was concluded that for deep-penetration problems to be
efficient, the relevant importance function distribution
must be known with sufficient accuracy; insufficient ac-
curacy can lead to significant errors in the prediction of
the detector response. Further, Goldstein and Greenspan
concluded that it is far better to invest more time in the
importance estimation calculation~the RMC calcula-
tion! than in the detector response calculation.

Continuing along these lines, Booth15 and Booth and
Hendricks11 developed an importance estimation tech-
nique called the forward-adjoint generator, which has
since become known as the weight window generator16

because it estimates importances to be used with the
weight window technique. The weight window tech-
nique, which is available in the standard version of MCNP,
is simply a space- and energy-dependent facility by which
splitting and Russian roulette are applied.The importance
is estimated as the ratio of the total score due to particles
~and their progeny! entering a cell to the total weight en-
tering a cell, in a forward Monte Carlo calculation.

Independently, another stochastic optimization
method, the direct statistical approach~DSA!, was intro-
duced by Dubi, Elperin, and Dudziak17 and Dubi, Gugvitz,
and Burn18 and later extended by Burn.19,20 In the DSA,
expressions for the dependence of the second moment
and the calculation time on the splitting parameters are
derived. From these expressions and initial “learning” cal-
culations to estimate the second moment and time func-
tion, splitting parameters may be optimized.

These approaches to estimating importances are basic
to the forward-learning Monte Carlo methods, and therein
lies the fundamental problem. To accurately estimate the
importance of a space-energy interval, a sufficient num-
ber of particles must pass through that space-energy in-
tervalandproceed tocontribute to theobjective. Inpractice,
this condition is typically not met, and as a result, either
no importance estimate or an unreliable importance esti-
mate is generated for each space-energy interval. There-
fore, current forward Monte Carlo importance generators,
such as the weight window generator, are restricted by their
statistical nature and are of limited use in multidimen-
sional deep-penetration problems. In the absence of more
sophisticated methods, however, the weight window gen-

erator is a very useful tool in the iterative process of
determining the variance reduction parameters.11,21

Therefore, it is apparent that a deterministic means
of generating problem-dependent importances would be
very beneficial for applying the Monte Carlo method to
large0complex problems. It has long been recognized that
the adjoint function~i.e., the solution to the adjoint Boltz-
mann transport equation! has physical significance as a
measure of the importance of a particle to some objec-
tive function~e.g., the response of a detector!.22 It is this
physical interpretation that, in theory, makes the adjoint
function well suited for use as an importance function
for biasing Monte Carlo calculations.

Coveyou, Cain, and Yost23 developed an inverse re-
lation between particle statistical weight and the adjoint
~importance! function and showed the merits of the im-
portance function for transport and source biasing. Kalos24

described the importance-sampling technique and its
relation to an importance function and a zero-variance so-
lution. Following these works, a number of applications of
deterministic and approximate adjoint solutions were made
with varying degrees of success.25–37Tang, Stevens, and
Hoffman27 applied the one-dimensionalSN adjoint solu-
tion to biasing shipping-cask calculations with MORSE.
Miller et al.29 developed an automatic importance gener-
ator for geometric splitting based on diffusion calcula-
tions and have incorporated it into the MCBEND code.
Mickael31,32developed a version of MCNP that performs
an adjoint diffusion calculation to generate weight win-
dow parameters for nuclear-well-logging calculations.
Turner36has described the local importance function trans-
form method, which uses a deterministic adjoint to bias
distance-to-collision and selection of postcollision en-
ergy group and direction for multigroup Monte Carlo cal-
culations. Recently, Van Riper et al. have developed the
AVATAR method,37 which uses the basic inverse relation
between statistical weight and importance to calculate
space-, energy-, and angular-dependent weight windows
from a three-dimensional adjoint calculation.

Thus, the idea of using the adjoint~importance! func-
tion for variance reduction of Monte Carlo calculations
is not new. However, several issues related to obtaining
and using the adjoint function remain. Specifically, pre-
vious work has not precisely accounted for the inherent
coupling between source and transport biasing, and most
have required predefined spatial meshes for the Monte
Carlo calculations and thus have focused on specific prob-
lem types.

In this work, we propose a method for using theSN

adjoint function for automatic variance reduction of Monte
Carlo calculations through source biasing and consistent
transport biasing with the weight window technique. We
deviate from the standard inverse relation and use the con-
cept of importance sampling to derive consistent rela-
tions for source-biasing parameters and weight window
lower bounds. For brevity, we refer to this method as
CADIS ~consistent adjoint driven importance sampling!.
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Source biasing is extremely important because~a! it
is very effective in reducing the variance, and~b! it al-
lows us to derive equations for the source-biasing param-
eters and weight window lower bounds such that the
particles are produced with corresponding weights within
the weight window intervals. Previous methods, such as
AVATAR, which use the inverse of the adjoint function
normalized to a particular~or average! source location
and energy, do not account for the inherent coupling be-
tween source and transport biasing. Further, they do not
take full advantage of the adjoint function via source bi-
asing.As a result, these methods are not effective for prob-
lems containing highly distributed sources, such as most
reactor shielding problems, in which the adjoint function
can vary by several orders of magnitude within the source
region. They are, however, effective for problems char-
acterized by point-type sources~e.g., monoenergetic point
source!, such as nuclear-well-logging problems.

We describe the implementation of CADIS into the
standard production Monte Carlo code MCNP and its ap-
plication to a realistic calculation, namely the reactor cav-
ity dosimetry calculation. The effectiveness of the method,
as demonstrated through the increase in calculational ef-
ficiency, is demonstrated and quantified. Moreover, this
paper addresses important issues associated with this pro-
cedure and its efficient use and implementation.

The CADIS method has the following desirable
features:

1. It is based on the source-biasing and weight win-
dow techniques, which are statistically stable and gener-
ally applicable.

2. It does not in any way restrict the accuracy of the
explicit three-dimensional continuous energy and angu-
lar Monte Carlo method.

3. Because of its practicality, stability, and general
applicability, this method may be used for complete au-
tomation when coupled to anSN adjoint generator.

4. The method requires little or no experience on the
part of the user.

This paper is organized as follows: The theory be-
hind the CADIS method is presented in Sec. II. The im-
plementation of this method into MCNP is described
in Sec. III. Analysis related to the application and com-
putational benefits of the CADIS method for a one-
dimensional test problem and a real-world application are
discussed in Sec. IV. The effect of adjoint energy and
spatial accuracy on calculational efficiency is examined
in Sec. V. Section VI summarizes and draws conclusions
on this work, and finally, recent developments are re-
ported in Sec. VII.

II. THEORY

Problems that can be solved by the Monte Carlo
method are essentially equivalent to integrations.2 For ex-

ample, the goal of most Monte Carlo particle transport
problems is to calculate the response~i.e., flux, dose, re-
action rate, etc.! at some location. This is equivalent to
solving the following integral:

R 5 E
P

C~P!sd~P! dP , ~2!

whereC is the particle flux andsd is some objective
function in phase-space~r, E, ZV! [ P.

From the following adjoint identity,22

^C†HC& 5 ^CH †C†& , ~3!

whereH † is the adjoint operator and̂& signify integra-
tion over all the independent variables, one can show that
the responseR ~for a vacuum boundary condition! is also
given by

R 5 E
P

C†~P!q~P! dP , ~4!

whereC† andq are the adjoint function and source den-
sity, respectively, and Eqs.~2! and~4! are equivalent ex-
pressions forR. The functionC†~P! has physical meaning
as the expected contribution to the responseR from a par-
ticle in phase-spaceP, or, in other words, the importance
of a particle to the response.

To solve this integral with the Monte Carlo method,
the independent variables are sampled fromq~P!, which
is not necessarily the best pdf from which to sample. An
alternative pdf [q~P! can be introduced into the integral
as follows:

R 5 E
P
FC†~P!q~P!

[q~P!
G [q~P! dP , ~5!

where [q~P! $ 0 and*P [q~P! dP 5 1.
From importance sampling,4 the alternative pdf[q~P!

that will minimize the variance forR is then given by

[q~P! 5
C†~P!q~P!

E
P

C†~P!q~P! dP

. ~6!

If the final resultR is known, then the Monte Carlo in-
tegration will returnR with zero variance. However, in
practice, the adjoint function is not known exactly,Rcan-
not be solved for by direct integration, and thus, it is nec-
essary to simulate the particle transport. For this process,
it is desirable to use the biased source distribution in
Eq. ~6! that, in the limit of an exact adjoint, leads to a
zero-variance solution.

Examining Eq.~6! reveals that the numerator is the
detector response from phase-spaceP, and the denomi-
nator is the total detector responseR. Therefore, the ratio
is a measure of the contribution from phase-spaceP to
the detector response. Intuitively, it is useful to bias the
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sampling of source particles by the ratio of their contri-
bution to the detector response, and therefore, this ex-
pression could also be derived from physical arguments.

Because the source variables are sampled from a bi-
ased pdf, the statistical weight of the source particles must
be corrected according to Eq.~1! such that

W~P! [q~P! 5 W0q~P! , ~7!

whereW0 is the unbiased particle starting weight, which
is set equal to 1. Substituting Eq.~6! into Eq. ~7! and
rearranging, we obtain the following expression for the
statistical weight of the particles:

W~P! 5

E
P

C†~P!q~P! dP

C†~P!
5

R

C†~P!
. ~8!

This equation shows an inverse relationship between the
adjoint ~importance! function and the statistical weight.
Previous work23 in this area assumed this relationship
and showed it to be near optimal, and others have veri-
fied this relationship through computational analysis.27,38

However, in this work, beginning with importance sam-
pling, we have derived~not assumed! this relationship.

To consider the transport process, we examine the
integral Boltzmann transport equation for particle den-
sity in the phase-spaceP, given by

C~P! 5 EK~P ' r P!C~P '! dP' 1 q~P! , ~9!

whereK~P 'r P! dP is the expected number of particles
emerging indP aboutP from an event inP ', andq~P! is
the source density. To transform Eq.~9! to be in terms of
the biased source distribution[q~P!, we multiply it by

C†~P!

EC†~P!q~P! dP

~10!

and define

ZC~P! 5
C~P!C†~P!

EC†~P!q~P! dP

~11!

to yield the following transformed equation:

ZC~P! 5 EK~P ' r P!C~P '! dP'

3
C†~P!

EC†~P!q~P! dP

1 [q~P! , ~12!

or

ZC~P! 5 EK~P ' r P! ZC~P '!F C†~P!

C†~P '!GdP' 1 [q~P! .

~13!

This transformed equation can be written as

ZC~P! 5 E ZK~P ' r P! ZC~P '! dP' 1 [q~P! , ~14!

where

ZK~P ' r P! 5 K~P ' r P!F C†~P!

C†~P '!G . ~15!

BecauseK~P ' r P! is not known, we simulate the
particle transport between events in the normal~un-
biased! way and alter the number of particles emerging
in P from an event inP' by the ratioC†~P!0C†~P'!, which
is the ratio of importances. This adjustment to the trans-
fer kernel can be accomplished through particle creation
and termination, such that

for
C†~P!

C†~P '!
. 1 , particles are created~splitting! ,

~16!

and

for
C†~P!

C†~P '!
, 1 , particles are destroyed~roulette! .

~17!

Because we are altering the number of particles emerg-
ing from an event, the statistical weight of the particles
must be corrected according to the conservation relation
of Eq. ~1! such that

W~P!K~P ' r P!F C†~P!

C†~P '!G 5 W~P '!K~P ' r P! ,

~18!

or

W~P! 5 W~P '!
C†~P '!

C†~P!
. ~19!

While the development of the equations is based on
the concept of zero variance, a zero variance cannot be
attained with estimation at particle events~e.g., colli-
sion, boundary crossings, etc.! because the number of
events is itself a random variable and contributes to the
variance of the final result. However, reduced variance
~even zero-variance solutions in the limit! can be achieved
when every sampling~source and transport! is made pro-
portional to its importance.
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To administer the splitting and rouletting of parti-
cles, we use the weight window technique available within
MCNP, which deals with particle weights. We have re-
lated the weights to particle importance via Eqs.~8! and
~19!. Because these relationships for the particle statis-
tical weights, which are used in source sampling and the
particle transport process, were derived from impor-
tance sampling in a consistent manner, we refer to the
use of the relations as consistent adjoint driven impor-
tance sampling~CADIS!.

III. IMPLEMENTATION INTO MCNP

In Sec. II, we defined expressions for the source-
biasing parameters and weight window lower bounds
based on the adjoint~importance! function. In this sec-
tion, we describe how this information is used within
MCNP, and we discuss the related difficulties and issues.

III.A. Calculation of Variance Reduction Parameters

To calculate source-biasing parameters over the
phase-space~space, energy, and angle!, the source from
the forward calculation is coupled with the adjoint func-
tion as shown in Eq.~6!. Further, the particle transport is
biased via Eqs.~8! and~19!.

The space-, energy-, and angular-dependent adjoint
function may require a significant amount of storage, par-
ticularly for large three-dimensional problems. TheSN

methodcandetermine thescalar~angular-independent!ad-
joint accurately, but not necessarily the angular-dependent
adjoint because of the limited number of directions. There-
fore, because of the memory requirements and inaccura-
cies of the angular-dependent adjoint, we use the space- and
energy-dependent~scalar! adjoint function

f†~r,E! 5 E
4p

C†~r,E, ZV! d ZV ~20!

for calculating space- and energy-dependent source-
biasing and weight window parameters. It should be noted,
however, that the use of a less accurate adjoint~impor-
tance! function may reduce the efficiency~with respect
to that from a very accurate adjoint function! but does
not impact the accuracy of the Monte Carlo result.

III.A.1. Source Biasing

Source biasing allows the simulation of a larger
number of source particles, with appropriately reduced
weights, in the more important regions of each variable
~e.g., space, energy, and angle!. This technique consists
of sampling the source from a biased~nonanalog! prob-
ability distribution rather than from the true~analog! prob-
ability distribution and then correcting the weight of the
source particles by the ratio of the actual probability di-

vided by the biased probability according to Eq.~1!. Thus,
the total weight of particles started in any given interval
is conserved, and an unbiased estimate is preserved.

The source energy and position are sampled from the
following biased source distribution

[q~r,E! 5
f†~r,E!q~r,E!

E
V
E

E
f †~r,E!q~r,E! dr dE

5
f†~r,E!q~r,E!

R
. ~21!

To calculate the source-biasing parameters from this
relation, it is necessary to couple theSN adjoint function
and the forward Monte Carlo problem description. Phys-
ically, the numerator is the detector response from space-
energy element~dr,dE!, and the denominator is the total
detector responseR. Therefore, the ratio is a measure of
the relative contribution to the detector response.

III.A.2. Transport Biasing

As mentioned, the weight window, as implemented
in the MCNP code, is a space- and energy-dependent tech-
nique by which splitting0roulette are applied. The weight
window technique provides an alternative to geometric
splitting0roulette and energy splitting0roulette for assign-
ing space- and energy-dependent importances. To use the
weight window technique within MCNP, we need to cal-
culate weight window lower boundsWl such that the sta-
tistical weights defined in Eq.~8! are at the center of the
weight windows~intervals!. The width of the interval is
controlled by the parameterCu, which is the ratio of up-
per and lower weight window values~Cu 5 Wu0Wl !.
Therefore, the space- and energy-dependent weight win-
dow lower boundsWl are given by

Wl ~r,E! 5
W

SCu 1 1

2 D 5
R

f†~r,E!

1

SCu 1 1

2 D , ~22!

and during the transport process, the weight window tech-
nique performs splitting or roulette in a manner consis-
tent with Eq.~19!.

It is important to note that because the source-biasing
parameters and weight window lower bounds are con-
sistent, the statistical weights of the source particles
@W~r,E! 5 q~r,E!0 [q~r,E!# are within the weight win-
dows as desired. Moreover, if the statistical weights of
the source particles are not within the weight windows,
the particles will immediately be split or rouletted in an
effort to bring their weights into the weight windows.7

This will result in unnecessary splitting0rouletting and a
corresponding degradation in computational efficiency.
For problems in which the adjoint function varies signif-
icantly within the source region~space and0or energy!,
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this coupling between source and transport biasing is
critical.

III.B. Integration of Importance Function into MCNP

The general version of MCNP provides facilities for
energy- and cell-dependent weight windows. This means
that in order to use a fine spatial weight window grid
~which is necessary in optically thick regions! with the
standard version of MCNP, the user must subdivide the
MCNP-cell–based geometry such that the ratio of impor-
tances between adjacent geometric cells is not too large.
Because the importance ratios are not a priori known,
this geometric discretization is not straightforward and
typically requires iterations of manual adjustments. Fur-
ther, the subdivision of the geometry into a very large
number of cells is time-consuming and can actually de-
grade the efficiency of the calculation. For these rea-
sons, we use the deterministicSN spatial mesh description
to construct a separate, but related, geometric grid to fa-
cilitate the use of the adjoint distribution. This is done
with a modified version of the MCNP code that is able to
read the binary flux file~which contains the adjoint func-
tion and the spatial mesh and energy group information!
from the standardSN DORT code39 and superimpose the
variable spatial mesh and energy grid onto the MCNP
problem in a manner transparent to the user. This grid
enables the use of the space- and energy-dependent im-
portance function and does not directly affect the trans-
port of particles. At various events in a particle history
~e.g., collisions, surface crossings, and0or increments of
mean free path!, the grid is searched to determine the
importance of the phase-space within which the particle
resides. The importance is then compared to the statisti-
cal weight of the particle and the appropriate action is
taken~e.g., splitting, Russian roulette, or no action!. It
should be noted that with the cell-based weight windows
in the standard version of MCNP, additional spatial search-
ing is not required.

Currently, the level of detail of the energy-dependent
importance function is dictated by the multigroup li-
brary used for theSN adjoint calculation~i.e., all groups
are used!. The effect on the calculational efficiency of
using fewer groups is discussed in Sec. V.

III.C. Weight Checking

Various concepts for minimizing the amount of com-
putational overhead associated with this process have been
examined. The first issue of concern is the determination
of the appropriate occasion~or event! to check the par-
ticle’s statistical weight. Because the MCNP geometry
does not need to be manually subdivided to assign the
spatial importances, the presently available weight checks
~i.e., at collisions and surface crossings! are no longer
sufficient to control particle weight, and thus, large dif-

ferences in the weight scored by individual particles are
possible. Additional~more frequent! weight checking has
two competing effects:~a! There is a computational cost
or penalty each time the weight is checked, and this pen-
alty is the time required by the searching routines to de-
termine the importance of the phase-space within which
the particle resides; and~b! more frequent checking leads
to more reliable results with well-behaved statistical con-
vergence. Therefore, it is clear that we need to determine
a criterion for an optimum or near-optimum compromise
for checking particle statistical weights. Moreover, it is
desirable that this criterion be problem independent.

In deterministic methods, the spatial domain of the
problem is discretized into relatively fine spatial meshes
to enable the approximation of spatial derivatives with
finite differences. Thus, the spatial meshes must be small
enough to allow this approximation~i.e., the particle den-
sity must not vary significantly within a mesh cell!. Be-
cause the particle density varies with the material cross
sections and the corresponding mean free path~mfp! ~the
average distance a particle travels between collisions!, it
is common practice to use mesh sizes of the order of
1 mfp to ensure that large variations do not occur and
that the aforementioned approximation is valid.

Analogously, in Monte Carlo methods the particle
statistical weight has been related to the adjoint function
@Eq. ~8!#, which is also directly related to the material
cross sections or mfp. Further, because the mfp is, by
definition, the average distance a particle travels between
collisions, it is a logical, problem-independent parameter
by which particle statistical weight can be controlled.
Therefore, during particle transport, the distance to col-
lision is determined as before, but this distance is now
compared to the mfp. If the distance to collision exceeds
the user-defined mfp increment, the particle is trans-
ported the distance of that increment, and the statistical
weight is compared to the weight window boundaries for
that region. Parametric studies analyzing the effect of the
increment of mfp on problem efficiency and reliability
are deferred to Sec. IV.

The second issue of concern is the amount of time
associated with checking the particle’s statistical weight.
The computational penalty in the Monte Carlo calcula-
tion for using larger numbers of spatial meshes or energy
groups is related to the search routine. For the binary
search~which is currently being used!, the average num-
ber of comparisons in a successful search, assuming that
each of theN intervals is equally likely, is40

CN 5 log2~N! 1
log2~N! 1 2

N
2 1 . ~23!

The behavior is demonstrated in Table I. While in our
problem each interval is not equally likely, the behavior
is similar. Thus, the computational cost associated with
increasing the number of intervals is a slowly increasing
function ~i.e., } log2! of the number of intervals.
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IV. APPLICATION AND ANALYSIS

IV.A. One-Dimensional Test Problem

For verification of implementation and performance
testing, a simple one-dimensional test problem was de-
veloped. This problem is defined as a 150-cm slab of or-
dinary concrete with a fission source on the left-hand
surface. The objective is to calculate the neutron tissue
dose on the right-hand side of the slab.

To accelerate the Monte Carlo calculation, a one-
dimensional adjoint distribution was calculated using the
DORT code with the SAILORP3 47-group library.41 The
deterministic model was constructed with 60 spatial
meshes, each;1 mfp or 2.5 cm thick. Figure 1 plots the

adjoint distribution for a few representative energy groups
and shows that the importance of each energy group varies
by several orders of magnitude within the slab. Figure 1
also shows that while the slopes of the adjoints are sim-
ilar for this problem, they vary significantly in magnitude.

For performance analysis, the test problem was run
~a! without any variance reduction techniques beyond the
default ~in MCNP! implicit capture and~b! with the
CADIS method in the modified version of MCNP for the
purpose of variance reduction. Each case was allowed to
run for 30 CPU-min on an IBM RISC06000 model 370
computer.

If the Central Limit Theorem is valid, the estimated
relative error squaredR2 should be proportional to 10N.
Also, the computer timeT used in a Monte Carlo calcu-
lation should be directly proportional toN ~the number
of histories!; therefore,R2T should be approximately con-
stant. Because in a Monte Carlo calculation it is desir-
able to minimizeR andT, the calculational efficiency is
quantified in terms of the figure of merit7 ~FOM!:

FOM 5
1

R2T
.

Therefore, the FOM will be used throughout this paper
for comparisons of calculational efficiency.

The results of these calculations are listed in Table II
and demonstrate that the CADIS method improves the
efficiency of this calculation by a factor of;2000 with

TABLE I

Relationship Between Number of Intervals
and Number of Comparisons

Number of Intervals
Average Number
of Comparisons

2 1.50
10 2.85
50 4.79

100 5.73
1000 8.98

Fig. 1. Adjoint distributions in one-dimensional test problem.
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respect to the normal MCNP calculation. Practically, this
means that the analog calculation would require;43.7
CPU-days to reach the statistical precision of the CADIS
results~obtained in 30 CPU-min!.

As mentioned, parametric studies to analyze the ef-
fect of the increment of mfp on problem efficiency and
reliability have been performed. The FOM is used as the
measure of efficiency, while the figure of reliability38

~FOR! is used as a measure of reliability and is calcu-
lated as follows:

FOR5
1

~VOV!T
,

where VOV is the variance of the variance. Figure 2 shows
the behavior of the FOM and FOR with varying incre-

ments of mfp for the one-dimensional test problem. In
this simple one-dimensional example, both parameters
follow expected behavior and peak at the same location.
It is important to note that the peaks for both the FOM
and FOR correspond to a mfp increment of 0.8, which is
near unity.

IV.B. Reactor Cavity Dosimetry Calculation

This problem addresses a major concern of nuclear
utilities. The life of a reactor and its possible extension
are directly limited by the embrittlement of the reactor
pressure vessel~RPV!, a low-carbon steel container sur-
rounding the reactor core, under neutron irradiation. The
embrittlement of the RPV material is primarily due to
the bombardment of neutrons with energies greater than

TABLE II

Results of One-Dimensional Test Calculations

Description
Number of
Historiesa

Dose
~rem0h! Rb VOV FOM

MCNP 2.8E15c 1.52E212 0.874 0.9945 0.044
MCNP with CADIS 5.5E14 1.36E212 0.019 0.0023 91

aFor 30 min of CPU time.
bR [ relative error.
cRead as 2.83 105.

Fig. 2. Figure of merit and figure of reliability versus increment of mfp checking for one-dimensional test problem.

194 WAGNER and HAGHIGHAT

NUCLEAR SCIENCE AND ENGINEERING VOL. 128 FEB. 1998



;1 MeV and cannot be directly determined from mea-
sured quantities. Radiation detectors are employed to pro-
vide data by which calculational methods0models can be
validated. Often the dosimeter is outside the RPV, in what
is referred to as the cavity; hence it is called cavity do-
simetry. The cavity dosimetry calculations attempt to es-
timate high-energy~$1.00MeV! reaction rates in a small
volume at a distance of;350 cm from the core center-
line and are used to validate methods0models that are
subsequently used to estimate RPV integrity and provide
a basis for plant life extension. The problem is illustrated
in Fig. 3, which shows one octant of the Three Mile Is-
land Unit 1~TMI-1! reactor. In the past, theSN method
was used, almost exclusively, to perform these calcula-
tions. More recently, the Monte Carlo method has been
employed in an effort to better understand the uncertain-
ties associated with theSN method and to attempt to val-
idateSN calculations.42–44

Because of the computational expense, the Monte
Carlo method is typically not used for such a large deep-
penetration–type problem. Figure 4 shows the radial flux
distributions from the core periphery to the cavity do-
simeter for several energy groups and demonstrates that
the flux decreases by;5 orders of magnitude over this
range. The error bars on this figure correspond to 1s sta-

tistical uncertainties. As the neutrons travel outward in
the radial direction from the core periphery~170 cm!,
they encounter the core barrel~179 to 184 cm!, the ther-
mal shield~187 to 192 cm!, the RPV~217 to 239 cm!,
the cavity region~239 to 350 cm!, and finally the cavity
dosimeter~350 cm!.

Without the use of variance reduction techniques, one
could allow MCNP to run this problem continuously for
weeks and still not obtain statistically significant0reliable
results. In an effort to quantify the previous statement,
this problem was modeled without the use of any vari-
ance reduction techniques, except for the energy cutoff,
and allowed to run for an extensive amount of time. Af-
ter simulating 100 million particle histories at a cost of
;50 h of CPU time, the ex-vessel cavity dosimeter tal-
lies did not receive even a single particle score~i.e., not
one of the 100 million particles made it to the ex-vessel
cavity dosimeter!. Based on the formulation for FOM,
we may approximate the amount of computer time nec-
essary to achieve a desired precision. From this, we find
that it would require;1.2 3 106 min, or ;2.3 yr, of
computer time to achieve a relative error of 5%. Hence,
it is clear that variance reduction techniques are essential
to achieving statistically meaningful results for an appli-
cation of this type.

Fig. 3. One octant of the TMI-1 reactor.
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IV.B.1. Application of Existing Variance
Reduction Methods

Before the CADIS method was developed and im-
plemented into MCNP, the reactor cavity dosimetry cal-
culation was manually optimized with existing variance
reduction methods.43 This manual optimization is now
briefly described and will be used as a reference for eval-
uating the CADIS method.

MCNP ~version 4A! offers several variance reduc-
tion techniques that are applicable to the cavity dosim-
etry calculation. The techniques chosen for this application
include energy cutoff, source biasing, weight windows,
and the exponential transformation. As the focus of the
calculation is on high-energy neutrons that have experi-
enced relatively few collisions, the energy cutoff was used
to kill all particles with energies below 1 MeV, and the
MCNP default implicit capture was turned off. Source
biasing was used to start more particles with high ener-
gies and desirable directions, and the source from the in-
ner assemblies was neglected.43 Weight windows were
used to describe the spatial- and energy-dependent im-
portance of the particles and to control particle weight
fluctuations, and finally, the exponential transformation
technique was employed in the steel regions to stretch
the distance between collisions in the direction of interest.

Initially, geometric splitting values based on intu-
ition and a limited understanding of the physical system
were used to perform some preliminary MCNP runs. The
results of these runs created a better understanding of the

cell importances and were subsequently used to refine
the cell importances in an effort to maintain a relatively
constant neutron density in the direction of the cavity do-
simeter. After several iterations and modifications to the
cell descriptions, a reasonable spatial importance func-
tion was obtained in the direction of the cavity dosim-
eter. The modifications to cell descriptions evolved from
the desire to maintain reasonably small splitting ratios
and thus consisted of decreasing the size of optically thick
cells by dividing them into multiple cells of smaller ra-
dial thickness. The cell subdivision resulted in a factor
of ;12 increase in the number of cells in the problem
description.

The geometric splitting parameters were then used
as a starting point for the weight window generator to
iteratively develop a spatial importance distribution for
two energy groups. This process was extremely tedious
and required a considerable amount of CPU time for the
weight window generator runs, many iterations of sig-
nificant smoothing and adjusting of the weight window
values, and a great deal of physical understanding. The
manual process of optimization was continued until the
desired level of efficiency was achieved~i.e., additional
efforts were no longer productive! with stable statistical
behavior.

IV.B.2. Application of CADIS

For this application, the63Cu~n,a!, 58Ni ~n, p!, and
54Fe~n, p! reaction rates~responses!, which have threshold

Fig. 4. Radial group flux distributions in the TMI-1 reactor.
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energies of;5.0,;1.0, and;1.0 MeV, respectively, are
all of equal interest, and thus we calculate an effective
response function~shown in Fig. 5! as a normalized sum
of each of the normalized response functions. Using this
effective response function, we can generate an impor-
tance function that will simultaneously optimize the cal-
culation for all three reaction rates and thus avoid
calculating an importance function for each individual
response that would require three separate Monte Carlo
calculations.

With this effective response function as the adjoint
source, a two-dimensionalR-u adjoint function is calcu-
lated with the DORT code39 using the SAILOR 47-group
library and a symmetricS8 quadrature set. Figure 6 shows
this adjoint function distribution for energy group 3~10.00
to 12.14 MeV!. The modified version of MCNP reads
the adjoint function from the standard DORT binary flux
file, couples the original source distributions with the ad-
joint function to generate the source-biasing parameters
and weight window lower bounds, and then performs the
transport calculation. TheSN spatial mesh that is used
within MCNP to define the spatial importance distribu-
tion is shown in Fig. 7. Within MCNP, the source spatial
distribution is represented by a probability distribution
function at 24 axial locations in each fuel pin of the last
two ~peripheral! layers of assemblies, and the energy dis-
tribution is based on an equivalent fission spectrum for
the uranium and plutonium fissile isotopes.45 The follow-

ing approximations0assumptions are made in this pro-
cess:~a! The axial behavior for the adjoint function is
approximated with a cosine distribution, and~b! to rep-
resent the spatial dependence of the energy-biasing
parameters, the energy-dependent adjoint function is
averaged over each user-defined spatial source cell, and
a dependent source-energy–biasing distribution is calcu-
lated for each source cell. For this particular application,
each assembly has an associated source-energy–biasing
distribution. No modifications to the source routines are
necessary because the capabilities to handle source vari-
able biasing and dependent source distributions are stan-
dard features of the MCNP code.

Because the focus of this work is on the automatic
variance reduction for the calculation and not on the cal-
culation itself, the interested reader is referred to Refs.
42 and 43 for discussions regarding the accuracy of re-
sults with respect to measurements andSN calculations,
as well as sensitivity studies related to various aspects of
this calculation. However, to provide some idea about
the accuracy and to demonstrate that the automatic vari-
ance reduction technique does not bias the calculation,
calculated-to-experimental~C0E! ratios, corresponding
to ENDF0B-V material and SAILOR dosimetry cross sec-
tions, are given in Table III. The differences between C0E
ratios calculated with the manually optimized model and
with the automatic variance reduction method are con-
sistent with the statistical uncertainties.

Fig. 5. Response functions.
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IV.B.3. Comparison of Calculational Efficiency

With the use of the automatic variance reduction
method, the computer time required by the MCNP model
to calculate the reaction rates at the ex-vessel cavity do-
simeter with 1s uncertainties of,3% is;1 h on an IBM
RISC06000 model 370. To reach the same precision~3%!
with the manually optimized model requires nearly 5 h
of CPU time. This behavior is demonstrated in Fig. 8,
which plots relative error~R! versus computer time for
the three reaction rates of interest. Also included in
Fig. 8 is a curve representing the ideal behavior,R} 10#T.
The two sets of curves in Fig. 8 correspond to calcula-
tions performed with different variance reduction ap-
proaches, namely manually optimized variance reduction
@including energy cutoff, source biasing, weight win-
dows~2 energy groups!, and the exponential transforma-
tion; see Ref. 43 for details# and the automatic variance
reduction derived from a two-dimensional adjoint func-
tion distribution~18 energy groups! using the effective
response function.

Table III lists the FOM values@FOM 5 10~R!2T #
and reveals that the use of the automatic variance reduc-
tion increases the calculational efficiency by a factor of
.4 with respect to our best manually optimized model
~note that the observed increase in efficiency is depen-
dent upon the quality and detail of the manual optimiza-
tion!. Further, the use of the automatic variance reduction

can be shown to increase the calculational efficiency by
a factor of;104 with respect to the analog case.

In an effort to evaluate the use of the effective re-
sponse function, automatic variance reduction calcula-
tions were also performed for each individual response
function separately~i.e., an adjoint calculation was per-
formed with each response function and used in individ-
ual MCNP calculations!. Table IV lists the FOM values
for these calculations. The use of individual adjoint func-
tions is shown to increase the efficiency by a factor of
;7 with respect to the single manually optimized impor-
tance function and by;35% with respect to the adjoint
function with an effective response function. The use of
the individual response functions required two more
DORT and MCNP calculations than the use of a single
effective response function. Considering the CPU time
for these additional calculations, the use of an effective
response function is actually more efficient for this
problem.

It should be noted that the aforementioned CPU times
do not include theSN adjoint calculation. Also, for the
purpose of comparison, the synthesized three-dimensional
deterministic results~group fluxes for energies greater
than;1 MeV! can be produced by two two-dimensional
and one one-dimensional calculations that require;0.25,
0.25, and 0.005 h of CPU time, respectively, on an IBM
RISC06000 model 370. The CPU time required for the
synthesis process is essentially negligible. Thus, group

Fig. 6. Adjoint function distribution for energy group 3~10.00 to 12.14 MeV!.
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fluxes over the entire spatial domain can be generated by
DORT in ,1 CPU-h.

Figure 9 shows the behavior of the FOM with vary-
ing increments of mfp for the three-dimensional reactor
cavity dosimetry calculation using the58Ni ~n, p! re-
sponse function and demonstrates the appropriateness and
problem independence of using a value near unity for the
increment of mfp parameter.

To provide an indication of the computational pen-
alty associated with weight checking, the percentage of
total time spent processing the weight windows and total

computational time spent in the spatial searching routine
as a function of the increment of mfp are plotted in
Fig. 10. This figure demonstrates that for an increment
of mfp near unity,;24% of the total computational time
is spent processing the weight windows, and;10% of
the total time is spent in the spatial portion of the weight
checking alone. This result has motivated attempts to de-
velop more clever search routines. However, no signifi-
cant gains have been achieved. Based on the results shown
in Figs. 2, 9, and 10, the default value for the increment
of mfp is unity.

IV.B.4. Comparison of Calculational Reliability

One potential problem associated with the intense use
of variance reduction techniques is erratic or unreliable
error estimations. Figure 8 shows that the relative error
follows the expected behavior predicted by the Central
Limit Theorem~R; 10#N ; 10#T, whereN is the num-
ber of particle histories!, which provides some indica-
tion about the validity of the estimated relative errors.
The use of the automatic variance reduction method ap-
pears to lead to smoother statistical convergence. All three
reaction rate tallies pass all ten of the MCNP statistical
checks,7 providing an additional indication of proper sta-
tistical convergence.

To further assess the estimated uncertainties, the man-
ually optimized and automatic variance reduction cases
were each run ten times with different starting random

Fig. 7. SN spatial mesh used to facilitate the spatial importance distribution.

TABLE III

Calculated-to-Experimental Ratios at the Cavity
Dosimeter for TMI-1

Manually Optimized
Automatic Variance

Reduction

Reaction C0E FOM C0E FOM

63Cu~n,a! 0.905~0.022!a 3.7 0.878~0.022! 16 ~4.3!b

54Fe~n, p! 0.965~0.023! 3.5 0.964~0.020! 20 ~5.7!
58Ni ~n, p! 0.947~0.020! 4.5 0.952~0.019! 22 ~4.9!

a1s uncertainties.
bRatio of “Automatic Variance Reduction” and “Manually

Optimized” FOMs.
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number seeds. This allows us to compare the relative er-
ror as estimated by MCNP to the relative standard devi-
ation of the calculated means~reaction rates! from the
multiple runs. The number of histories was chosen such
that both cases would yield similarR’s; the manually op-
timized and automatic variance reduction cases required
20 3 106 and 33 106 particle histories, respectively.
Table V compares the calculated relative standard devi-
ations to the average~MCNP! estimated relative errors
and reveals that the relative error is underestimated by as
much as 20% in the manually optimized case and over-

estimated by.20% in the automatic variance reduction
case. In other words, the estimated relative errors from
the automatic variance reduction case are more conser-
vative than those from the manually optimized case.

For a normal distribution, the calculated value should
be within the 1s relative error 68% of the time. For our
ten runs~with three reaction rates per run!, the calcu-
lated values are observed to be within the 1s relative er-
ror 57% of the time for the manually optimized case and
87% of the time for the automatic variance reduction case.
In addition, the standard deviation of the estimated rel-
ative errors and the estimated VOV’s are a factor of;3
less in the automatic variance reduction case than in the
manually optimized case. These results clearly demon-
strate that the automatic variance reduction method pro-
duces reliable0conservative error estimations.

V. EFFECT OF ADJOINT ACCURACY

The effectiveness of an adjoint~importance! func-
tion for variance reduction of Monte Carlo calculations
is dictated by its accuracy. It is for this reason that we
use an accurate method—theSN method—to calculate
the adjoint function. However, for extremely large prob-
lems and for the extension to three-dimensional adjoint
functions, the memory and disk space requirements for
theSN adjoint calculations can become prohibitive. One
way to alleviate this problem is to sacrifice some of the

Fig. 8. Relative error versus computer time.

TABLE IV

Effect of Response Functions on FOMs at the Cavity
Dosimeter for TMI-1

Effective Response
Function

Individual Response
Function

Reaction C0E FOM C0E FOM

63Cu~n,a! 0.878~0.022!a 16 ~4.3!b 0.882~0.019!a 25 ~6.8!b

54Fe~n, p! 0.964~0.020! 20 ~5.7! 0.953~0.016! 28 ~8.0!
58Ni ~n, p! 0.952~0.019! 22 ~4.9! 0.923~0.015! 30 ~6.7!

a1s uncertainties.
bRatio of “Automatic Variance Reduction” and “Manually

Optimized” FOMs.
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accuracy of the adjoint calculation through the use of
fewer energy groups. However, the relationship between
the accuracy of adjoint functions and their effectiveness
for variance reduction of Monte Carlo calculations is prob-
lem dependent and is not well known. Therefore, in this
section we investigate the effectiveness of importance
functions with varying degrees of energy- and spatial-
dependent accuracy.

V.A. Energy Dependence

To examine the effect of using an adjoint function
with varying numbers of energy groups, one of the fol-
lowing two approaches may be employed:~a! collapse
an appropriate multigroup library into various libraries
with fewer groups and use these libraries to calculate ad-
joint functions or~b! calculate the adjoint function for a
given number of~maximum! groups and collapse it into
various coarse-group structures. In this study, we have
chosen the second approach because it does not require
the generation of additional multigroup libraries and sub-
sequentSN calculations, and it uses an accurate impor-
tance function as its starting point. In other words, this
method eliminates concerns related to the selection of
multigroup boundaries for the cross-section collapsing
procedure; specifically, the effect of their selection on
the accuracy of theSN solution.

To collapse an adjoint function into fewer groups, it
is necessary to introduce group quantities such that the
total responseR,

R 5 E
V
E

E
f†~r,E!q~r,E! dE dV , ~24!

is conserved. This is done by setting the integral equal to
the product of the adjoint function and the source in coarse
groupg:

E
g

f†~r,E!q~r,E! dE 5 fg
†~r !qg~r ! , ~25!

where we define the coarse-group source and adjoint by

qg 5 E
g

q~r,E! dE

and

fg
† 5

E
g

f†~r,E!q~r,E! dE

qg
. ~26!

This procedure formally preserves the total response
and leads to the definition of a coarse-group adjoint
through source weighting. Because of the source weight-
ing, these relations are only applicable within the source
region.

However, for this study, it is necessary to collapse
the adjoint throughout the problem; i.e., including regions

Fig. 9. Figure of merit versus increment of mfp checking for the reactor cavity calculation.
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outside the source region~s!. To do this, it is necessary to
conserve the response from each spatial region. Because
the forward flux in a spatial region can be considered to
be the source of particles within that region, it may be
used to weight the adjoint in the collapsing procedure.
Replacing the source term with the forward flux in the
preceding relations yields

E
g

f†~r,E!f~r,E! dE 5 fg
†~r !fg~r ! , ~27!

where we define the coarse-group flux and adjoint by

fg 5 E
g

f~r,E! dE

and

fg
† 5

E
g

f†~r,E!f~r,E! dE

fg
. ~28!

A computer program was written to read the DORT
binary flux files from forward and adjoint calculations,
perform the collapse as just discussed, and generate a
collapsed adjoint binary flux file in the same format. This
allows the current modified version of MCNP to read and
utilize the various collapsed adjoint functions without ad-
ditional modifications.

Fig. 10. Searching time versus increment of mfp checking for the reactor cavity calculation.

TABLE V

Comparison of Estimated Relative Errors and Calculated Relative Standard Deviations at the Cavity Dosimeter

Manually Optimized Automatic Variance Reduction

Reaction
Average

EstimatedRa
Calculated Relative
Standard Deviationb Ratio

Average
EstimatedRa

Calculated Relative
Standard Deviationb Ratio

63Cu~n,a! 0.0229 0.0198 0.86 0.0223 0.0178 0.799
54Fe~n, p! 0.0203 0.0243 1.20 0.0197 0.0132 0.668
58Ni ~n, p! 0.0181 0.0200 1.10 0.0189 0.0142 0.750

aRefers to the average of the relative errors estimated by MCNP in the ten runs.
bRefers to the relative standard deviation of the calculated reaction rates in the ten runs.
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V.A.1. One-Dimensional Test Problem

To evaluate this collapsing procedure and sub-
sequently the effectiveness of a coarse-group adjoint
function for variance reduction of the aforementioned one-
dimensional concrete slab problem, the original 47-
group adjoint is collapsed into 24-, 12-, 5-, 2-, and 1-group
adjoint functions. The coarse-group boundaries are a sub-
set of the fine-group boundaries, and each coarse group
contains the same number of fine groups~except for the
last group because the ratio of the number of fine groups
and the number of coarse groups is not an integer!. For
example, in the 12-group structure, the highest energy
group contains the highest four groups of the 47-group
structure.

With these collapsed adjoint functions, MCNP cal-
culates source-biasing parameters and weight window
lower bounds. The effect of the collapse on the source-
biasing parameters is illustrated in Figs. 11 and 12.

Figure 13 shows the relationship between the num-
ber of adjoint energy groups and the Monte Carlo calcu-
lational efficiency in terms of FOM. The FOM values
are normalized such that the highest value is unity. The
figure demonstrates that for this calculation there is some
benefit to using 47 groups as opposed to 24 groups. How-
ever, the benefit is very small~;5%!, and the increase in
time required by theSN calculation with twice the num-

ber of energy groups is not represented. In general,
Fig. 13 shows diminishing increases in efficiency with
larger numbers of energy groups~beyond;20 groups!.
For example, while the maximum increase in efficiency
with respect to the unbiased case is;2000, the increase
in efficiency associated with using a collapsed 2-group
adjoint is;850. Thus, for this particular problem, an ad-
joint with few energy groups~;2 to 5 groups! is capable
of increasing the calculational efficiency by approxi-
mately half as much as the adjoint with 47 groups.

V.A.2. Reactor Cavity Dosimetry Calculation

For analysis wth this problem, the 18-group~energy
groups above 1 MeV! adjoint is collapsed into 9-, 6-, 3-,
2-, and 1-group adjoint functions.

Figure 14 shows the relationship between the num-
ber of adjoint energy groups and the Monte Carlo calcu-
lational efficiency in terms of FOM. The FOM values
are normalized such that the highest value is unity. The
figure demonstrates that for the54Fe~n, p! and58Ni ~n, p!
reaction rate calculations there is no benefit to using more
than;9 groups, and relatively minor losses in efficiency
are associated with using fewer energy groups~i.e., 2
to 6 groups!. On the other hand, because the63Cu~n,a!
reaction rate calculation is sensitive to a rather narrow

Fig. 11. Comparison of fine- and coarse-group source-biasing parameters.
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energy range~;6 to 12 MeV!, larger losses in efficiency
are observed when fewer energy groups are used.
Nevertheless, for this particular problem, an adjoint with
few energy groups~;3 groups! is capable of increasing
the calculational efficiency to approximately half of the
observed maximum, which is a factor of;104 more ef-
ficient than the analog case.

V.B. Spatial Dependence

For solution using theSN method, as well as other
deterministic methods, the spatial domain is discretized
into spatial meshes to enable the approximation of spa-
tial derivatives with finite differences. Naturally, the ac-
curacy of this approximation is dependent on the size of
the spatial meshes. To examine the effect of theSN ad-
joint mesh size on effectiveness for Monte Carlo vari-
ance reduction,SN adjoint calculations with mesh sizes
ranging from 0.5 to 4 mfp’s were performed. These ad-
joints were then used to accelerate Monte Carlo calcula-
tions for the one-dimensional test problem. The effect of
the adjoint mesh size on Monte Carlo calculational effi-
ciency in terms of FOM is shown in Fig. 15. The FOM
associated with mesh sizes as large as 4 mfp’s is shown
to be;50% of the maximum observed value~correspond-
ing to 0.5 mfp!. Thus, the dependence of the FOM on
mesh size is relatively minor for this problem.

VI. SUMMARY

A general method for automatically calculating and
using variance reduction parameters for Monte Carlo
shielding calculations based on the space- and energy-
dependentSN adjoint function has been developed and
presented. The theory supporting the use of the adjoint
function for variance reduction of Monte Carlo calcula-
tions is based on the physical interpretation of the ad-
joint function. The equations for determining the source-
biasing and weight window parameters were consistently
derived from basic importance sampling with the adjoint
function as the weighting function, and thus, the method
is referred to as CADIS, Consistent Adjoint Driven Im-
portance Sampling.

The CADIS method eliminates the manual process
of selecting variance reduction parameters and thus can
significantly reduce the amount of experience, time, and
effort required for preparing and performing large Monte
Carlo calculations. In addition, because the determinis-
tic adjoint function is a far more accurate importance func-
tion than even an experienced variance reduction user is
capable of creating, it is more efficient and reliable for
variance reduction of Monte Carlo calculations.

This method is implemented into the general-purpose
Monte Carlo code MCNP. Currently, this modified ver-
sion of MCNP is able to~a! read the adjoint function and

Fig. 12. Comparison of fine- and coarse-group source-biasing parameters.

204 WAGNER and HAGHIGHAT

NUCLEAR SCIENCE AND ENGINEERING VOL. 128 FEB. 1998



Fig. 13. Effect of number of adjoint energy groups on FOM.

Fig. 14. Effect of number of adjoint energy groups on FOM.
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the variable spatial mesh and energy-group informa-
tion from a standardSN code~DORT! binary flux file,
~b! superimpose the variable spatial mesh and energy grid
onto the MCNP problem,~c! couple the original source
distributions with the adjoint function to generate depen-
dent source-biasing parameters and weight window lower
bounds, and~d! perform the transport calculation using
the constructed grids and calculated parameters. Various
concepts for minimizing the amount of computational
overhead associated with this process, such as when to
check the weight and what searching schemes to use, have
been examined.

The effectiveness of this method within the modi-
fied version of MCNP has been verified through its ap-
plication to a realistic shielding calculation, namely the
reactor cavity dosimetry calculation. With the use of the
automatic variance reduction method, the efficiency of
the reaction rate calculation was shown to increase by a
factor of .4, and the statistical convergence was im-
proved with respect to our best manually optimized model.
Perhaps as important as its ability to increase the calcu-
lational efficiency is the fact that it does so in a way that
requires very little time or experience on the part of the
user. Because it is based on the source-biasing and weight
window techniques, the method is practical and features
statistical reliability and general applicability. In addi-
tion, the method does not in any way restrict the accu-
racy of the explicit three-dimensional continuous energy
and angular Monte Carlo method.

VII. RECENT DEVELOPMENTS

The limitation of this type of approach is the require-
ment for anSN adjoint solution, which requires the user
to be knowledgeable in both Monte Carlo and determin-
istic methods, which is not often the case. To overcome
this difficulty, algorithms have been developed and im-
plemented into MCNP for automatically generating in-
put files for SN adjoint calculations directly from the
MCNP input, including mesh generation and material
cross-section preparation. This automation eliminates the
tedious process of manually generating these files and
requires very little experience on the part of the user with
regard toSN adjoint calculations.

The coupling to MCNPof these modifications,~a! the
automatic generation of input files forSN adjoint calcula-
tions and~b! the automatic calculation and utilization of
variance reduction parameters fromSN adjoint functions,
has resulted in the complete automation of variance re-
duction for MCNPshielding calculations. This will be the
subject of future papers.
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