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A CRITICALITY CODE VALIDATION EXERCISE WITH TSUNAMI

Bradley T. Rearden, Oak Ridge National Laboratory,* Oak Ridge, TN 37831-6170, USA

Introduction

In the criticality code validation of common systems, many paths may exist to a correct bias,
bias uncertainty, and upper subcritical limit. The challenge for the criticality analyst is to select an
efficient, defensible, and safe methodology to consistently obtain the correct values.

One method of testing criticality code validation techniques is to use a sample system with a
known bias as a test application and determine whether the methods employed can reproduce the
known bias. In this paper, a low-enriched uranium (LEU) lattice critical experiment with a known
bias is used as the test application, and numerous other LEU experiments are used as the
benchmarks for the criticality code validation exercises using traditional and advanced parametric
techniques. The parameters explored are enrichment, energy of average lethargy causing fission
(EALF), and the TSUNAMI integral index ck with experiments with varying degrees of similarity.
This paper is an extension of a previously published summary.[1]

Test Application System

For this exercise, the critical experiment identified in the International Handbook of Evaluated
Criticality Safety Benchmark Experiments [2] (IHECSBE) as LEU-COMP-THERM-017 Case 22 was
selected as the test application system. This system consists of square-pitched clusters of water-
moderated U(2.35)O2 rods with steel reflecting walls. This system has an EALF value of 0.194 eV.
With ENDF/B-V cross sections, SCALE/KENO V.a [3] computes a keff of 0.9901 ± 0.0002. The
experimentally measured keff is 1.0 with a stated uncertainty of 0.28%. The negative code bias of
~1% lies outside three standard deviations of the experimental uncertainty. The exercises reported
in this paper are used to account for this bias in an effort to determine an appropriate upper
subcritical limit for safe operation had this been a system with an unknown bias.

Benchmark Experiments

A key element in a criticality code validation is the selection of appropriate benchmark
experiments. For this exercise, 214 thermal LEU benchmark experiments from the IHECSBE were
selected for initial evaluation. The benchmarks include fuel-rod lattices as well as solution systems.
The solution systems were included because they have similar enrichments to that of the test
application, but should be rejected by the parametric techniques for other obvious dissimilarities.
Benchmarks are included from evaluations LEU-COMP-THERM-009, -010, -017, -018, -019, -020,
-021, -022, -023, -024, -026, -032, -040, and -042, as well as LEU-SOL-THERM-001, -003, -004,
-005, -006, -007, -008, -009, -010, -016, -017, -018, -019, -020, and -021. These experiments have
235U enrichments ranging from 2.35 to 10.08 wt % and EALF values ranging from 0.035 to 1.95 eV.

For this exercise, benchmarks are available that contain all of the nuclides present in the test
application. For systems where all nuclides are not present in a single benchmark, alternative
techniques, beyond the scope of this paper, should be explored.

Traditional Trending Analysis

The first technique employed in this validation exercise is documented in NUREG/CR-6361
[4], which uses a trending analysis of keff relative to some average system parameter(s). The
techniques described in Ref. 4 are well known, and hence not repeated here. Two trending
parameters, enrichment and EALF, were selected for this exercise, and ULSTATS [4] was used to
compute the bias, bias uncertainty, and USL-1 value. An arbitrary administrative margin of 5% was
used for this exercise.



Using all 214 benchmarks, USLSTATS predicts a keff of 0.9947 with a confidence width of
0.008744 and a USL-1 value of 0.9359 for systems with an enrichment of 2.35 wt % and a keff of
0.9982 with a confidence width of 0.01049 and a USL-1 value of 0.9377 for systems with an EALF
of 0.194 eV. Trend plots for this analysis are shown in Figures 1 and 2 for enrichment and EALF,
respectively. The error bars on the keff values in the figures represent the quadratically combined
experimental and Monte Carlo uncertainties.

Figure 1. Trend plot of keff vs. enrichment for 214 benchmarks.

Figure 2. Trend plot of keff vs. EALF for 214 benchmarks.

In Figure 1, the benchmark keff values at the target enrichment of 2.35 wt % range from ~0.99
to ~1.00, and in Figure 2, a greater spread of data, ~0.99 to ~1.01, is observed near the target
EALF of 0.194 eV. Given the large number of selected benchmarks with parameter values near the
target values, a non-parametric analysis could be used to assess a negative 1% bias, consistent
with that observed for the test application system. However, it is possible that if some benchmarks
were excluded from the analysis, a non-conservative estimate of the true bias could result.

Even when the benchmarks are parsed in parametric space such that only lattice benchmarks
with the target enrichment of 2.35 wt % are examined, a 0.5% spread in keff values near the target
EALF value of 0.194 eV remains, as shown in Figure 3.
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Test Application
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Figure 3. Plot of keff vs. EALF for lattice benchmarks with 235U enrichments of 2.35 wt %.

TSUNAMI Methods

The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation
(TSUNAMI) [3] computational sequences within the SCALE code system use first-order eigenvalue
perturbation theory to predict the response of a system keff value to changes in each constituent
groupwise cross-section-data value. These sensitivity data can be coupled with energy-dependent
cross-section-covariance data to give an uncertainty in the computed keff value due to uncertainties
in the cross-section data. The TSUNAMI-IP [3] code utilizes the sensitivity and uncertainty data from
an application and a benchmark to quantify system similarity with numerical indices, including the
integral index ck. The ck index is a correlation coefficient that quantifies the amount of shared
uncertainty in the keff values of an application and a benchmark due to cross-section uncertainties.
A ck value of 1.0 means that the uncertainties for the application and the benchmark are all
generated from the same nuclides and reactions at the same energies, whereas a ck value of 0.0
means that uncertainties of the two systems are completely unrelated.

A premise of the TSUNAMI validation concept is that computational biases originate with the
cross-section data. If the cross-section uncertainties are correctly tabulated, then computational
biases should be bounded by the uncertainties. For the current application system, TSUNAMI gives
the uncertainty in keff due to uncertainties in the cross-section data of 0.85%. When combined
quadratically with the experimental (0.28%) and statistical (0.02%) uncertainties for this system, a
total uncertainty of 0.90% results. Recall that the computed keff of this system is 0.9901 ± 0.0002.
Thus, this computed keff lies just outside one standard deviation of the measured value of 1.0.

Use of TSUNAMI for Similarity Assessment

The sensitivity data for the test application and the benchmarks were drawn from an existing
database of TSUNAMI sensitivities computed with the KENO V.a-based TSUNAMI-3D sequence
using the SCALE 238-group ENDF/B-V cross-section data library. These sensitivity data were
processed through the TSUNAMI-IP code to produce the ck of each benchmark relative to the test
application.

A scatter plot of keff vs. ck for all 214 benchmarks is shown in Figure 4. All experiments have ck

values above 0.8, with some as high as 0.999. This indicates that the minimum correlation of the
uncertainties for the selected benchmarks is 80% and the maximum correlation is 99.9%. As ck

approaches 1.0, the keff values of the most similar benchmarks converge towards the keff of the test
application. The TSUNAMI methods provide a convenient means of automatically selecting
experiments that are most similar to the test application. The ck values for 2.35 wt % benchmarks
are shown in Figure 5 as a function of EALF. The benchmarks with EALF values closest to that of
the test application, 0.194 eV, have ck values near 1.0. The ck value decreases for benchmarks with
increasing or decreasing EALF values relative to the test application. Thus, the TSUNAMI methods

Benchmarks with EALF
Values Near that of Test
Application - 0.194 eV



have automatically selected the benchmarks that are most similar to the test applications in terms of
multiple traditional trending parameters.

Examining the keff values of only the 2.35 wt % benchmarks with ck values ≥ 0.98, shown in
Figure 6, the trend of the benchmarks towards a keff of 0.99 where ck = 1.0 is further emphasized.

Figure 4. Plot of keff vs. ck for 214 benchmarks.

Figure 5. Plot of ck vs. EALF for benchmarks with 235U enrichments of 2.35 wt %.

Figure 6. Plot of keff vs. ck for benchmarks with 235U enrichments of 2.35 wt %.
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Use of TSUNAMI for Bias Determination

TSUNAMI was used to predict the bias, bias uncertainty, and USL-1 for the test application. If
keff is trended from low to high values of ck, then extrapolating to the keff value where ck is 1.0 gives
the predicted bias of the application system. With extrapolations, the confidence band is nonlinear,
and an enhanced version of USLSTATS was developed to output a quadratic confidence band.

When ck trending is applied to the test application with all 214 benchmarks, and with the
extrapolation to ck = 1.0, USLSTATS predicts a keff of 0.9953 with a confidence width of 0.009205
and a USL-1 value of 0.9361. The trend plot of this analysis is shown in Figure 7.

Figure 7. Trend plot of keff vs. ck for 214 benchmarks.

How To Determine Sufficiency of Benchmarks

For this test application, the availability of several benchmarks with ck values above 0.99
allows accurate determination of the code bias. In fact, the use of only a few systems with ck values
above 0.99 should lead to an accurate assessment of the computational bias. However, in general,
such highly correlated benchmarks are not always available. To determine how similar the
benchmarks must be to the test application to obtain the correct bias, several other bias
determinations were conducted with various subsets of benchmarks, each with varying degrees of
correlation. Initially, three subsets of benchmarks were included:

 those with ck ≥ 0.95,
 those ck ≥ 0.90, and
 those with 0.80 ≤ ck ≤ 0.90.
Trend plots with ck ≥ 0.95, ck ≥ 0.90 and 0.80 ≤ ck ≤ 0.90 are shown in Figures 8, 9, and ,

respectively. The results of each of the trending analyses are summarized in Table 1, along with
the results of the traditional trending analysis. The resulting bias, confidence width, and USL-1
values with all benchmarks and those with ck ≥ 0.95 and ck ≥ 0.90 are quite similar. However,
when the benchmarks with the highest ck values are omitted in the 0.80 ≤ ck ≤ 0.90 case, the bias
increases non-conservatively by 1.5%. However, the USL-1 value only increases by ~0.5% due to
the positive-bias adjustment of USLSTATS.

Test Application
ck = 1.0



Figure 8. Trend plot of keff vs. ck for benchmarks with ck ≥ 0.95.

Figure 9. Trend plot of keff vs. ck for benchmarks with ck ≥ 0.90.

Figure 10. Trend plot of keff vs. ck for benchmarks with 0.80 ≤ ck ≤ 0.90.
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Table 1. Results of trending analyses with benchmark sets with differing ranges of ck

Trending parameter Benchmarks included Predicted keff Confidence width USL-1

Enrichment All 0.9947 0.0087 0.9359

EALF All 0.9982 0.0105 0.9377

All 0.9953 0.0092 0.9361

ck ≥ 0.95 0.9935 0.0077 0.9358

ck ≥ 0.90 0.9934 0.0092 0.9342
ck

0.80 ≤ ck ≤ 0.90 1.0084 0.0104 0.9396

Lowest Correlated Benchmarks

To further explore the variation of the bias and the resulting USL-1 values, a series of
USLTATS calculations was conducted. First, a USLSTATS analysis was conducted using only
benchmarks with the lowest ck values. Then, benchmarks with increasing ck values were
incrementally added to form a cumulative benchmark set, including all benchmarks with a certain ck

and below, and the USLSTATS analysis was repeated. The results of this series of USLSTATS
calculations are shown in Figure 11. For example, the k(1.0) curve at the “Maximum ck” value 0.90
is the predicted keff for the test application using a cumulative set of all benchmarks with ck values of
0.90 and lower. This particular 0.90 data point corresponds to the trending analysis shown in
Figure 10. Thus, Figure 11 represents the data from 214 trend plots, like Figure 10, but with
increasing numbers of benchmarks moving from low to high ck values. The k(1.0) line represents
the extrapolation of each trend line to ck = 1.0.

Figure 11. Results of USLSTATS analyses for cumulative benchmarks sets with increasing ck values.

The wide variation of the predicted values for benchmark sets including only low ck values, as
shown in Figure 11, is due to a lack of information included in the initial steps of this analysis. After
sufficient benchmarks are included, the solution begins to converge. In Figure 11, the predicted keff

value does not drop below 1.0 until the benchmark set includes experiments with ck ≥ 0.95.
However, the predicted keff less the confidence width, shown as the k(1.0) – w(1.0) curve, does drop
below 1.0 when ck values ≥ 0.90 are included in the benchmark set. Because of the positive bias
adjustment, the USL-1 value for all sets never exceeds 0.94.



Highest Correlated Benchmarks

An alternative approach is to repeat this procedure starting with only the benchmarks with the
highest ck values and incrementally adding benchmarks with decreasing ck values. The results of
this series of analyses are shown in Figure 12. Here, the predicted keff value remains below 1.0 for
all benchmark sets, and the trending procedure converges with only a few benchmarks included.
Also, the USL-1 values remain below 0.94.

Figure 12. Results of USLSTATS analyses for cumulative benchmarks with decreasing ck values.

From Figures 11 and 12, it is clear that the inclusion of higher quality benchmarks, those with
higher ck values, lead to an improved estimate of the actual bias. In Figure 11, the predicted keff

less the confidence band bounds the computed keff of the test application when benchmarks with ck

values ≥ 0.95 are included in the analysis. However, this value should not be treated as a general
cutoff criterion, as it may not be generally applicable for all systems. Note that for this test
application, there is a scarcity of data between ck of 0.90 and 0.95. Only 19 experiments have ck

values in this range, and the computed keff values for these benchmarks range from 0.99 to 1.01.
The use of 19 experiments with the wide variation of keff values is not sufficient for a reliable
prediction using the parametric methods of USLSTATS.

Sufficient Number of Benchmarks

Another process for determining a sufficient number of benchmarks is to examine the number
of benchmarks with ck ≥ 0.90 required to obtain a correctly predicted keff value. The convergence of
the USLSTATS calculation as a function of incrementally adding benchmarks with increasing ck

values of 0.90 and above is shown in Figure 13. Here, the USLSTATS results are shown as a
function of the number of experiments included, not the maximum ck of the experiments. For this
case, when 25 experiments are included in the analysis, the predicted keff less the confidence band
bounds the actual keff of the test application. Thus, the inclusion of more benchmarks with ck values
between 0.90 and 0.95 could lead to the correct prediction of keff without including experiments with
ck values exceeding 0.95. Also note that for this series of USLSTATS calculations, the USL-1 value
remains below 0.935 for the entire series of calculations.



Figure 13. Results of USLSTATS analyses for cumulative benchmarks with increasing ck values from
0.90.

Conclusions

This code validation exercise has demonstrated that the known bias of an actual system can
be accurately bounded through the use of parametric analysis and applicable critical experiments.
The TSUNAMI integral index ck was shown to identify benchmarks that are most similar to the test
application, consistent with those identified through the use of multiple traditional parameters,
enrichment, and EALF. As the ck value of the most similar benchmarks increases, the keff values
trend towards that of the test application. For each trending analysis, the USL-1 value remains
below 0.94. It was demonstrated that, for this test application with benchmarks that contain all of its
nuclides, trending based on benchmarks with ck values ≥ 0.95 bounds the true computational bias
with only a few benchmarks. It was also demonstrated that trending with 25 or more benchmarks
with ck ≥ 0.90 bounds the true computational bias.
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