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21CTP Technical Goal:

Program Structure Sub-Program Element R&D Phase DateProject ID/Agreement ID

Develop and demonstrate an emissions compliant engine system for Class 7-8 highway 
trucks that improves the engine system efficiency from ~42% today to 50% by 2010.
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Project Objectives
Materials research and development that will be applied in 
advanced diesel engine aftertreatment systems to comply 
with future emission regulations with minimum fuel penalty.
FY 2005 Focus
1. Evaluate new materials for particulate matter filtration 
efficiency & back pressure. 2. Assess impact of phosphorus 
on oxidation, NOx adsorber (LNT) and urea-SCR catalysts. 
Planned Duration
Jan 2005 to December 2006
DOE Funding/Industry Cost Share
FY04: $300K/$300K; FY05: $250K/$250K

Accomplishments
1. Various catalyzed and uncatalyzed DPF materials were 
obtained from suppliers and screened for filtration efficiency 
and back pressure.  A promising material was identified. 
2. The cause of LNT deactivation by phosphorus poisoning 
was identified. For LNTs, the NOx storage capacity function is 
affected first and more severely than NO oxidation and NOx 
reduction. (June 2005)
Significant Future Milestones
1. Study durability of selected filter materials (Dec. 2006)
2. Assess impact of combination of phosphorus, sulfur and 
thermal deactivation on OXICAT, LNT and SCR catalysts.
(Dec. 2006)

1. The effect of phosphorus 
exposure on LNT NOx storage 
for three different P exposures
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2. Backpressure change 
during the soot-loading 
process of two uncatalyzed
high filtration efficient DPF 
materials. 
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Project Objectives
Materials research and development for diesel aftertreatment systems

Evaluate new materials for particulate matter filtration
– Identify promising materials
– Develop test protocols
– Assess filtration efficiency of the substrate materials  
– Determine impact on engine performance

Assess impact of phosphorous on aftertreatment systems
– Develop rapid aging protocol
– Establish correlation between catalyst aging in laboratory and engine
– Determine phosphorus (P) effect on oxidation catalyst (oxicat),

Lean-NOx trap (LNT) and urea-Selective Catalytic Reduction (SCR)
– Determine fuel penalty vs. catalyst aging due to P
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Technical Approach
Evaluate new materials for particulate matter filtration

Modify diesel burners
Measure particulate filtration efficiency 
Measure pressure drop

Assess impact of phosphorous on aftertreatment systems
by comparing fresh and aged catalyst performance using
fuel burner and bench test system

LNT: P impacts on NO NO2 Oxidation, NOx storage and
reduction functions 
SCR:  Zeolite based and vanadia based samples were evaluated
using temperature and NH3/NOx ratio sweeps
Oxidation catalyst: developing correlation between bench and field 
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Relevance to 21 CTP Goals
21 CTP Goals: improve fuel efficiency, reduce emissions, enhance safety,
reduce owning/operating costs, maintain/enhance performance

HVPM Vision: to identify and provide improved and new materials to enable 
cost-effective, high energy-efficiency, heavy-duty engines with high durability 
and reliability and substantially lower emissions.

Johnson Matthey CRT®
Particulate Filter

Critical factors
- Back pressure
- Durability (DF) 
- Size/weight
- Regen cycles

catalyst filter
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The filtration efficiency of fresh samples of both substrates 
is higher than 95%

Time (min)
0 10 20 30 40 50

Ef
fic

ie
nc

y 
(%

)

85

90

95

100

Number efficiency

Volume efficiency

Cordierite substrateNew material substrate

(average of 3 uncatalyzed fresh samples)(average of 6 uncatalyzed fresh samples)

Advanced Materials Technology

Cordierite substrate

Exponential increase ∆P 
Higher ∆P for catalyzed DPF

New material substrate

Linear increase ∆P
Similar ∆P for catalyzed DPF

Pressure Drop in Substrates
(single uncatalyzed fresh sample)
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The filtration efficiency of both fresh substrates is higher than 95%.
The pressure drop of the new material is significantly lower than cordierite.
The new material has the potential to yield more efficient DPFs.
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Technical Accomplishments – DPF 
Substrates

Various catalyzed and uncatalyzed DPF materials were 
obtained from suppliers and screened for filtration 
efficiency and backpressure (∆P).

A promising material was identified.

It provides filtration efficiency higher than 95 % with 
reasonably low ∆P.

Catalyst coating does not affect ∆P on selected material.
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Phosphorus Distribution on Catalyst
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Phosphorus penetration  profile in 
catalyst washcoats
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Phosphorus Effect on LNT Storage
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Loss of Oxidation Function Less Severe than Storage Loss
Phosphorus Exposure (g/L)
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R2 = 0.9683
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Impact of Phosphorus Exposure 
on BSFC of LNT
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Assumptions :
•Using in-pipe HC injection to make exhaust rich
•HC injection amount is constant
•Duration of injection (tR) is constant
•Duration of storage (tS) decreases with LNT capacity
•Increase # of rich excursions with lost reducing function

Ratio of tS to tR decreases with
increased P 
BSFC penalty increases with
decreasing tS/tR
10g/L P > double BSFC
penalty vs. baseline
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P Impact on SCR Catalysts
2NO + 2NO2 + 4NH3 4N2 + 6H2O

P impacts strongly at high
temperature

P impacts both NOx and NH3
conversions

Ammonia oxidation decreases
NOx reduction
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Effect of P Exposure on Zeolite SCR
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Kinetics provide insights on effect of P
Similar kinetics on both catalysts

< 400oC, P impact less since some 
SCR occurs in bulk

> 400oC, P impact increased as more
SCR occurs on outer surface

∆ curves typical of activity loss due to
physical blockage of active sites

Vanadia SCR drops on initial P, smaller                        
decline on further exposure 

Zeolite less affected by initial P, bigger
decline on further exposure 

Increased Temperature on P exposure helps 
zeolite, hurts vanadia  P Exposure (g/L)
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Comparison of P Impact on LNT vs. SCR
Relative NOx Reduction Performance 
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P deactivation is a 
challenge for both 
strategies.

Zeolite SCR has best
durability initially; SCRs 
similar after extended 
exposure.
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Technical Accomplishments - Catalyst 
Deactivation by Phosphorous (P)

Evaluated vanadia and zeolite based SCR catalysts
P similarly impacts both NH3 and NO conversions.
Zeolite catalyst shows higher P tolerance initially, but both catalysts 
had similar deactivation after extended exposure.
Speculate that P blocks NH3 adsorption sites which prevent NO 
reduction.

Evaluated LNT catalyst
P impacts NOx storage leading to decreased NO conversion.   
P impacts NOx storage more at low NOx slip than at high slip. 
P impacts NO oxidation and reduction functions less than storage.

P reduces NOx catalyst performance and increases BSFC penalty.  
P impacts LNTs more than SCRs; presents a challenge for both
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Technology Transfer

Diesel Particulate Filter
Scale-up engine tests with DPFs made of the new 
substrate material

Catalyst durability
Provide engineering margin for catalyst sizing 
estimates. 
Work with catalyst suppliers to improve catalyst 
durability
Suggest options for mitigation strategy
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Future Work (2006)

Test thermal deactivation of DPF substrate 
materials
Assess impact of combination of phosphorus, 
sulfur and thermal deactivation on 
aftertreatment catalysts.

Complete work on oxidation catalyst
Combine effect of P exposure with S and 
thermal aging and compare to engine aging
Explore 1 or 2 mitigation strategies

Advanced Materials Technology

Questions?
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Publications/Presentations
• R. G. Silver, M. Stefanick, J. M. Faas and  S. Zemskova, “Impact of Phosphorus Exposure on  Lean NOx 

Trap Performance,” presented at 19th Catalysis Society Meeting in May 2005.
• R.G. Silver, M. Stefanick, and A. Alletag, “Impact of Phosphorus on NOx Aftertreatment Catalysts,” poster 

presentation at 2005 DEER meeting.


