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� PhD from Delft University of Technology (The Netherlands), “Improving fuel
cycle design and safety characteristics of a Gas Cooled Fast Reactor” (2006)

� Started at GeorgiaTech March 1st 2007 as Assistant Professor

� Research focus: Fast Reactors and Nuclear Fuel Cycle

� (Ultimate) Goal: closing the nuclear fuel cycle
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Interaction of a mixture of nuclides with neutrons is described by the
transmutation equation:

� time rate of change = production rate - destruction rate + source

dNi

dt
= −(σaφ+ λi)Ni +

∑

k

Nkσc,k→iφ+
∑

l

λl→iNl+

∑

j

yj→iNjσf,jφ + qi

σ̄x(r, t) =

∫

∞

0
σx(r, E, t)φ(r, E, t)dE
∫

∞

0
dEφ(r, E, t)dE
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� Transmutation equations form a coupled system, can be written as matrix
system.

∂ ~N

∂t
= M ~N + ~Q

� M : Transmutation Matrix, contains nuclear data (σ, λ) (e.g. from unit cell
calculation), and φ

� Note that all σ̄x, φ are spectrum averaged values: depletion behaviour
depends on reactor spectrum (thermal, epi-thermal, fast).
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Isotopes with a long half life in Spent Nuclear Fuel

� Fission Products: Tc-99, I-129, Cs-135

� Minor Actinides: Np-237, Am, Cm

� But above all: plutonium

� Note: in some cases, long-term radioactivity due to decay products
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Production of TRU (Np, Pu, Am and Cm), per TWhe, in a PWR or similar reactor,
enriched uranium (4.5%)

� Pu: + 26 kg / TWhe

� Np: + 1.8 kg / TWhe

� Am: + 1.11 kg / TWhe

� Cm: + 0.3 kg/ TWhe

Or, per GWe installed power: 1000 MWe PWR, load factor 91.3%, annual
production 8 TWhe, corresponding to 208 kg Pu and 25.7 kg MA, per year.
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� Reduction of long-term repository requirements can be achieved by ’getting
rid’ of TransUranic (TRU) material, i.e. by fissioning the TRU isotopes

� Plutonium poses proliferation risk, should not be separated individually

� Uranium is hardly radioactive, fissile fraction in SNF low, poses no problems if
separated

� All TRU material to be separated ’en bloc’ from SNF, and put into an
Advanced Burner Reactor, for transmutation
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� Reduction of long-term repository requirements can be achieved by ’getting
rid’ of TransUranic (TRU) material, i.e. by fissioning the TRU isotopes

� Plutonium poses proliferation risk, should not be separated individually

� Uranium is hardly radioactive, fissile fraction in SNF low, poses no problems if
separated

� All TRU material to be separated ’en bloc’ from SNF, and put into an
Advanced Burner Reactor, for transmutation

� Notes:

1. this not a ’cycle’ in the true sense of the word

2. still relies on natural uranium as the source of the fissile isotopes
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Capture to fission ratio α = σc

σf
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High energy neutrons: fission dominates over capture.
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Neutron per fission η = ν
σf

σc+σf
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More neutrons available in high-energy fissions
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� High energy neutrons, E = 1/2mv2 → fast neutrons, fast reactors
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� High energy neutrons, E = 1/2mv2 → fast neutrons, fast reactors

� No moderator, and no optimal fuel to moderator ratio: coolant fraction as
small as possible within thermal limits
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� High energy neutrons, E = 1/2mv2 → fast neutrons, fast reactors

� No moderator, and no optimal fuel to moderator ratio: coolant fraction as
small as possible within thermal limits

� Coolant should not introduce too much moderation: no water (!), usually liquid
metals: sodium, lead, lead-bismuth
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small as possible within thermal limits
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metals: sodium, lead, lead-bismuth

� Gas cooling possible: Gas Cooled Fast Reactor (Generation IV system),
using helium or (supercritical) CO2
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� High energy neutrons, E = 1/2mv2 → fast neutrons, fast reactors

� No moderator, and no optimal fuel to moderator ratio: coolant fraction as
small as possible within thermal limits

� Coolant should not introduce too much moderation: no water (!), usually liquid
metals: sodium, lead, lead-bismuth

� Gas cooling possible: Gas Cooled Fast Reactor (Generation IV system),
using helium or (supercritical) CO2

� Cross sections smaller at higher energies, especially fission XS, so usually
high enrichment needed: 15% - 30% fissile fraction
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Coolant voiding causes four effects:

1. Slightly harder spectrum increases fission yield ν, reduces parasitic
absorption in resonances, and increases fissions of threshold fissioners: +ρ

2. Reduced absorption by coolant: + ρ

3. Reduction of scattering by coolat increases leakage: - ρ

4. Reduction of coolant will increase the temperature, in a properly designed
fuel this should lead to higher absorption due to the Doppler effect: - ρ
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dominates: low and wide (’pancake’) core



Void effect in fast reactors

Transmutation due to neutron
interactions

GNEP fuel cycle goal

Fast Reactor Basics

Advanced Burner Reactor

SCALE in academic
environment: SABR

SCALE for Gas Cooled Fast
Reactor analysis

Future outlook

Discussion

17 / 44

Coolant voiding causes four effects:

1. Slightly harder spectrum increases fission yield ν, reduces parasitic
absorption in resonances, and increases fissions of threshold fissioners: +ρ

2. Reduced absorption by coolant: + ρ

3. Reduction of scattering by coolat increases leakage: - ρ

4. Reduction of coolant will increase the temperature, in a properly designed
fuel this should lead to higher absorption due to the Doppler effect: - ρ

Notes:

1. In practice a high-leakage configuration is chosen, to make sure that effect 3
dominates: low and wide (’pancake’) core

2. Void effect has ’spatial dependence’, i.e. the location where voiding occurs
determines the sign / magnitude of the reactivity effect
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σ̄γ(E, T ) =
σ0Γγ

Γ

√

E0

E
Ψ(ξ, x)

x =
2

Γ
(E − E0), ξ =

Γ
√

4E0kT/A

Ψ(ξ, x) =
ξ

2
√
π

∫

∞

−∞

dy

1 + y2
exp

(

1

4(x− y)2ξ2

)

Temperature dependence in ξ. Higher T ’broadens’ σ̄γ but the area under the
curve is constant
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Total resonance absorption is given by resonance integral:

I =

∫

σγ(E)φ(E)dE

Increasing T broadens resonance, ’catching’ more neutrons.

� This is valid for all cross sections, including fission: highly enriched fuel may
have positive Doppler-coefficient

� Resonances more effective at low energy (higher flux): fast reactors generally
have small Doppler effect

� Need to calculate self-shielding accurately to adequately calculate Doppler
effect
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� Core expansion has negative reactivity effect (both radial and axial
expansion): thermal expansion feedback

� Careful design of fuel pins necessary: for instance thermal effects can cause
a more dense fuel configuration, and positive thermal feedback occurs (fuel
bowing!)

� Compaction increases reactivity: can cause problems if fuel melts
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For fast reactors point-kinetics is just as (in)valid as for thermal systems

dp(t)

dt
=
ρ(t) − β(t)

Λ(t)
p(t) +

i=I
∑

i=1

λiCi(t)

dCi

dt
=
βi(t)

Λ(t)
p(t) − λiCi

Λ ∝ 1

vνΣf

β(t) =
〈φ+

0 , Fdψ0〉
〈φ+

0 , Fψ0〉
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� Delayed neutron fraction generally decreases with atomic number: heavier
elements produces less delayed neutrons

� Delayed neutron fraction generally increases with mass number, i.e. Pu-241
produces more delayed neutrons than Pu-239

� Generally, in fast reactors the effective β is smaller than β (due to adjoint
weighting)

� Delayed neutrons spectrum softer than fission neutron spectrum; if strong
thermal absorbers are present in a system, delayed neutrons are more likely
to be absorbed than fission neutrons: βeff further reduced
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Proposed ABR cycle is an example of a ’double strata’ cycle

Simple calculation: for each GWe of PWR power, approx. 900 MWth of ABR
power required to destruct TRU (or: ABR installed capacity 30% of total installed
capacity)



ABR characteristics

Transmutation due to neutron
interactions

GNEP fuel cycle goal

Fast Reactor Basics

Advanced Burner Reactor

SCALE in academic
environment: SABR

SCALE for Gas Cooled Fast
Reactor analysis

Future outlook

Discussion

27 / 44

� TRU-Zr metallic fuel; TRU is mainly reactor grade plutonium, with high fissile
fraction: Doppler positive, need Zr for absorption and negative temperature
coefficient

� Metallic fuel: high thermal conductivity, high thermal expansion (good for
reactivity feedback)

� No uranium: bad for βeff; e.g. Gas Cooled Fast Reactor on UPuC fuel, 16%
Pu, 84% U-238: U-238 contributes 51% of βeff (!). U-238 threshold fission,
small XS, but large delayed neutron production

� Sodium cooling, but many other system parameters to be determined
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� Pure transmutation systems (usually) have large reactivity swing: either high
overreactivity of fresh fuel, or short irradiation interval (with low burnup)

� Low burnup leads to high mass flow of material in the reprocessing plants

� Sub-critical reactors: criticality is no longer constraint, high burnup possible

dp

dt
=
ρ− β

Λ
p(t) +

i=I
∑

i=1

λiCi(t) + S(t)

dCi

dt
=
βi

Λ
p(t) − λiCi
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� Georgia Tech has a design class, each year, Spring semester.

� Focus has been on several fusion driven subcritical reactor designs for
transmutation

� Several possibilities have been investigated: gas cooling, Pb-Li cooling,
Once-Through (deep burn) vs. multiple recycle, metallic fuel vs. coated
particles etc.

� This year’s class: Sodium-cooled Advanced Burner Reactor: SABR

� Neutronics and fuel cycle mainly based on SCALE 5.1 cross section
generation
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� Started out using TRITON and CSAS, but no source options present,
switched to EVENT (3-D even-parity code, C. d’Oliveira)

� Cross sections generated using CSAS, collapsed from 238 groups to lower
number (application dependent), then use EVENT, fixed source calculation in
3-D annular geometry, to obtain ’keff’, flux spectrum etc.
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� Use TRITON to do fuel depletion, but TRITON does not have source-driven
option

� Solution 1 (simple solution): use EVENT to calculate power densities for
several fuel ’batches’ (or zones), then use individual TRITON runs to deplete
materials

� Disadvantage: spectrum will be slightly wrong because of (lack of) 14 MeV
neutrons in TRITON

� Solution 2: use CSAS for XS generation, then XSDRNPM fixed source
calculation, then use COUPLE + ORIGEN

� Requires considerable scripting to set up, so option 1 was used
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� Use CSAS for XS, then perform EVENT calculations to obtain power
distributions, then use individual TRITON pin-cell models to do the depletion
calculations

� Reshuffle fuel every once in a while, do new CSAS - EVENT - TRITON
calculations

� For instance, fresh fuel may be added to the outermost fuel positions, then
moved inward (’out-to-in’), or fresh fuel may be added to the inner positions,
then moved outward (’in-to-out’)

� Surprising result: power densities in fuel zones hardly dependent on fuel
shuffling scheme

� Subject of MSc research Mr. C. Sommer (December 2007)
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� First approach to Doppler coefficient was with MCNP, but the students soon
realized that wasn’t ideal: much work to generate libraries with NJOY, long
MCNP runs to get adequate statistics

� SABR reactivity coefficients proved to be smaller than MCNP statistics:
switched over to TRITON + EVENT

� Doppler coefficient is very small; variational analysis was done on pin-cell
model using CSAS and VAREX. Result: positive contributions from Pu-239
and Pu-241 are nearly equal to negative effects of Pu-240 and Zr

� Dynamic analysis (plasma, neutrons, thermal and feedback) subject of MSc
thesis Mr. T. Sumner (December 2007)
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� My thesis research (2002) started out by making a TRITON-substitute using
SCALE 4.4a + Perl, for closed fuel cycle analysis of coated particle Gas
Cooled Fast Reactor (Nuclear Technology, Sept. 2005)

� Later switched to GFR600 reactor which has plate fuel; TRITON (NEWT) in
SCALE 5 could not handle this geometry, and although Mark Dehart helped
me out as much as he could, I switched back to my old code

� One MSc and one BSc graduated with reports based on this code
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wi ≡
∆ρ

∆Ni

=
〈φ∗0, [λ0

∂P
∂Ni

− ∂L
∂Ni

]φ0〉
〈φ∗0, P0φ0〉

(1)

� Reactivity weight wi correspnds to change of reactivity of reactor upon small
addition of an isotope i

� Calculated using TSUNAMI-1D for GFR600 fuel slabs (Nucl. Sc. Eng. Oct.
2007)



Future outlook

Transmutation due to neutron
interactions

GNEP fuel cycle goal

Fast Reactor Basics

Advanced Burner Reactor

SCALE in academic
environment: SABR

SCALE for Gas Cooled Fast
Reactor analysis

Future outlook

Discussion

39 / 44



Step 1: design an ABR

Transmutation due to neutron
interactions

GNEP fuel cycle goal

Fast Reactor Basics

Advanced Burner Reactor

SCALE in academic
environment: SABR

SCALE for Gas Cooled Fast
Reactor analysis

Future outlook

Discussion

40 / 44

� Obviously the first step

� Expected results: large reactivity swing, low burnup, very low βeff, very small
Doppler coefficient (probably positive)

� Metallic fuel (TRU-Zr or similar), high thermal expansion, improving feedback;
pancake core to enhance leakage (which will also increase transmutation -
consider as an example the Korean PEACER design, which has a core height
of 0.5 m and diameter of 5 m (!))

� If the reactivity swing is too large, and Doppler coefficent and βeff are too low,
one may opt for a sub-critical system

� Maximum power of sub-critical system determined by keff and source
strength: Accelerator Driven System is low-power due to beam-line limitations

� Fusion driven sub-critical system does not have this limitation, but an
adequate fusion source may take some development time
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� Accurate cell calculations. Fine-group approach seems necessary (ERANOS:
1968 groups collision probabilities, MC2: 1740+ groups): CENTRM should be
fine

� The Doppler coefficient may be improved by including moderator pins in the
fuel assemblies, thus 2-D cell calculations will be required (moderator pins are
commonly used in TRU reactor designs to increase flux in the resonances)

� (Distribution of) Void effect can be estimated using Equivalent Perturbation
Theory (or Extended PT); geometry effects can be estimated with variational
analysis; Requirement of solving (generalized) adjoints, especially on a
core-wide level

� Core-reflector interaction can be considerable in fast reactors, especially for
stainless steel reflectors due to resonances in iron: need to perform detailed
homogenization calculations for reflectors and ’diluent assemblies’
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� Moderated targets: introduction of MA (Am, but Cm also considered) into
special assemblies, with moderator. Target is to benefit from high flux level
typical for fast reactor, combined with larger XS at thermal energies to obtain
large depletion rates

� May seem counterproductive from α = σc/σf considerations

� The idea is to introduce only transmutation target material (esp. Am), and
allow it to capture neutrons to form highly fissile isotopes (Am-242, Cm-243)

� Only beneficial if high burnup can be reached in one irradiation campaign
(90%) so that targets are candidates for direct disposal

� Moderated targets can only be accurately calculated using fixed source
calculations

� Promising option, several irradiations currently ongoing in French Phénix
reactor; important question is the material throughput in these targets
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This presentation is merely an overview of some aspects reactor physics. I’d like
to hear your comments!
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