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Background

• Texas A&M University is developing a new multidisciplinary computational

curriculum involving the Nuclear Engineering Department, the Computer

Science Department, the Mathematics Department, and the Statistics

Department.

• This curriculum will include numerical methods for multiphysics/multiscale

computation, advanced programming techniques for massively parallel

computation, uncertainty and error analysis for code verification and

validation, and processes for large-scale multiphysics code development.

• Multiphysics coupling and multiphysics solution techniques are topics of

great current interest.

• While we consider a Krylov method for thermal radiation transport today,

our ultimate computational target is radiation-hydrodynamics, which

combines fluid flow with thermal radiation transport, and is of fundamental

importance in many high energy density physics applications.
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Technical Motivation

• Thermal radiation transport is a critical component of multiphysics

simulations for high energy density physics applications, and is extremely

challenging from a numerical point of view.

• Cross sections strongly vary with material temperature and photon

frequency.

• Problems often contain optically-thin, strongly absorbing, and highly

diffusive regions.

• Diffusion-synthetic acceleration (DSA), and linear multifrequency-grey

acceleration (LMFGA) are often used in thermal radiation transport

calculations.

• It has recently been found that neither of these schemes is unconditionally

effective.

• The deficiencies in these schemes can be essentially eliminated by

recasting them as preconditioned Krylov methods.
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Overview

Krylov Solvers

The Equations of Thermal Radiation Transport

The Source Iteration Technique

Diffusion-Synthetic Acceleration (DSA)

Linear Multifrequency-Grey Acceleration (LMFGA)

A Nested Preconditioned Krylov Method

Final Comments
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Krylov Solvers

• We consider Krylov solvers only from a blackbox point of view.

• To solve A
−→

x =
−→

q , the solver is given the initial solution vector guess

and the source vector.

• At each iteration step, the solver passes to the user some vector
−→

z , and

requires the user to pass back the vector
−→

y = A
−→

x .

• It is important to recognize that A need never be formed. Only its action is

needed.

• Convergence can be complicated to predict, but in general, a small

condition number of the matrix (the ratio of the largest to smallest singular

values) is desirable, and eigenvalues clustered in the complex plane are

desirable .
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The Equations of Thermal Radiation Transport

A Transport Equation for I(r, Ω, E, t):

1

c

∂I

∂t
+ Ω · ∇I + σtI =

1

4π
σsφ+ σaB(T ) , (1)

An equation for the material temperature T (r, t):

Cv
∂T

∂t
=

∫
∞

0

σa[ φ− 4πB(T ) ] dE , (2)

where

• c is the speed of light,

• Ω is the photon direction vector,

• σt(r, E, T ) is the total macroscopic cross section,

• σs(r, E, T ) is the macroscopic Thompson scattering cross section,
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The Equations of Thermal Radiation Transport

• σa(r, E, T ) is the macroscopic absorption cross section,

• φ(r, E, t) is angular intensity integrated over all directions,

• Cv(r, T ) is the material heat capacity,

• B(E, T ) is the Planck function:

B(E, T ) =
2E3

h3c2

[
exp

(
E

kT

)
− 1

]
−1

, (3)

• h is Planck’s constant,

• k is Boltzmann’s constant.
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The Equations of Thermal Radiation Transport

• These equations are generally solved via Newton’s method.

• After linearization, temporal discretization, and energy discretization, we

obtain a temperature-independent transport equation:

Ω · ∇Ig + σ∗τ,gI =
1

4π
σ∗s,gφg +

1

4π
νχg

G∑
k=1

σ∗a,kφk + ξg , g = 1, G,

(4)

• and an intensity-dependent temperature equation:

T = T ∗+∑G
g=1 σ

∗

a,g

[
φg − 4πB∗

g

]
+ C∗

v

Δtk

(
T k− 1

2 − T ∗

)
C∗

v

Δtk +
∑G

g=1 σ
∗

a,g4π
∂B∗

g

∂T

. (5)
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The Equations of Thermal Radiation Transport

• where

στ = σt + τ , (6a)

τ =
1

cΔtk
, (6b)

ν =

∑G
g=1 σ

∗

a,g4π
∂B∗

g

∂T

C∗

v

Δtk +
∑G

g=1 σ
∗

a,g4π
∂B∗

g

∂T

, (6c)

χg =
σ∗a,g

∂B∗

g

∂T∑G
k=1 σ

∗

a,k
∂B∗

k

∂T

, (6d)

ξg = σ∗a,gB
∗

g + τψ
k− 1

2

g −

1

4π
νχg

[
G∑

k=1

σ∗a,k4πB
∗

k +
C∗

v

Δtk

(
T k− 1

2 − T ∗

)]
. (6e)
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Source Iteration

• The traditional method for solving the transport equation is a nested

source iteration.

• Denoting the iteration index by �, the inner iteration can be represented as

follows:

Ω · ∇I�+1
g + σ∗τ,gI

�+1
g =

1

4π
σ∗s,gφ

�
g +

1

4π
νχg

G∑
k=1

σ∗a,kφk + ξg , (7)

• and the outer iteration can be represented as follows:

Ω · ∇I�+1
g + σ∗τ,gI

�+1
g −

1

4π
σ∗s,gφ

�+1
g =

1

4π
νχg

G∑
k=1

σ∗a,kφ
�
k + ξg , (8)
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Source Iteration

• The operator Ω · ∇ + σ∗τ,g involves no angular or energy coupling.

• When spatially discretized it takes on a block lower-triangular form with a

block corresponding to the intensities within a single spatial cell for a

single direction and energy.

• This operator is easily inverted using a “wavefront” or “sweep” algorithm.

• The attenuation of errors in φg determines the convergence rate of the

inner iteration process.

• The attenuation of errors in f =
∑G

g=1 σ
∗

a,gφg determines the

convergence rate of the outer iteration process.
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Source Iteration

• The inner iteration process can become arbitrarily slow to converge as

σ∗s,g → σ∗τ,g .

• The outer iteration can become arbitrarily slow to converge as ν → 1 and

τ → 0.

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that the most slowly converging error modes for both

iterations are those that slowly vary in space.

• Thus performing a sweep is a form of relaxation: high-frequency errors are

strongly attenuated, while low-frequency errors are poorly attenuated.
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Diffusion-Synthetic Acceleration

• Inner source iteration with DSA takes the following form:

Ω · ∇I
�+ 1

2

g + σ∗τ,gI
�+ 1

2

g =
1

4π
σ∗s,gφ

�
g +

1

4π
νχg

G∑
k=1

σ∗a,kφk + ξg , (9a)

−∇ ·
1

3σ∗τ,g

∇δφg +
(
σ∗τ,g − σ∗s,g

)
δφg = σ∗s,g

(
φ

�+ 1

2

g − φ�
g

)
, (9b)

φ�+1
g = φ

�+ 1

2

g + δφg . (9c)
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Diffusion-Synthetic Acceleration

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that this scheme completely attenuates the

low-frequency error modes and grossly underestimates the high-frequency

error modes.

• This is the best one can hope for in an approximate inverse.

• The scheme is unconditionally effective in 1-D and only becomes

ineffective in strongly heterogeneous multidimensional problems.
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Linear Multifrequency-Grey Acceleration

• Outer source iteration with LMFGA takes the following form:

Ω · ∇I
�+ 1

2

g + σ∗τ,gI
�+ 1

2

g −
1

4π
σ∗s,gφ

�+ 1

2

g =
1

4π
νχgf

� + ξg , (10a)

−∇ · 〈D〉∇δΦ + [〈σa〉 (1 − ν) + τ ] δΦ = f �+ 1

2 − f � , (10b)

f �+1 = f �+ 1

2 + 〈σa〉δΦ (10c)
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Linear Multifrequency-Grey Acceleration

• where

〈D〉 =
G∑

g=1

ςg

3σ∗τ,g

, (11)

〈σa〉 =

G∑
g=1

σ∗a,gςg , (12)

ςg =

χg

σ∗

τ,g∑G
k=1

χk

σ∗

τ,k

. (13)
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Linear Multifrequency-Grey Acceleration

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that this scheme completely attenuates the

low-frequency error modes and grossly underestimates the high-frequency

error modes.

• This is the best one can hope for in an approximate inverse.

• The scheme appears to be unconditionally effective in 1-D but can

apparently become unstable in strongly heterogeneous multidimensional

problems.
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A Nested Preconditioned Krylov Method

• Our aim is to derive an equation for the absorption rate, f , from the

equation for the intensity, I .

• For reasons explained shortly, the Krylov method will be used to solve a

preconditioned variant of the equation for f .

• Once f is obtained, I can be obtained by solving G independent

monoenergetic transport equations.

• We begin by expressing the transport equation in operator form:

AgIg =

[
1

4π
νχgf + ξg

]
, g = 1, G. (14)

Ag ≡ Ω · ∇ + σ∗τ,g −
1

4π
σs,gP , (15a)

P〈·〉 =

∫
4π

〈·〉 dΩ (15b)
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A Nested Preconditioned Krylov Method

• Solving the transport equation for Ig , we obtain

Ig = A
−1
g

[
1

4π
νχgf + A

−1
g ξg

]
. (16)

• Given f , this equation is solved via a preconditioned Krylov method to

obtain Ig .

• Integrating the above equation over all directions, multiplying on the left by

σ∗a,g , and summing over all groups yields the desired equation for f :

Bf =
G∑

g=1

σ∗a,gPA
−1
g ξg , (17)

B =

⎡
⎣I −

G∑
g=1

σ∗a,gPA
−1
g νχg

⎤
⎦ , (18)
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A Nested Preconditioned Krylov Method

• The action of B requires the solution of G independent one-group

transport equations.

• These equations can be efficiently solved via a DSA-preconditioned Krylov

method, yielding an overall Krylov method that is nested.

• However, it is not necessary use a preconditioned Krylov method to solve

the one-group equations unless source iteration is inefficient.

• There are two advantages to solving the equation for f :

• The rank of the f -equation is far less than that of the original transport

equation - number of space points versus number of space points times

number of energies times number of directions.

• The transport operator is unbounded but B is compact with real

eigenvalues between 0 and 1.
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A Nested Preconditioned Krylov Method

• We left precondition the f equation with the operator C:

CBf = C

G∑
g=1

σ∗a,gPA
−1
g ξg , (19)

C ≡
(
I + 〈σa〉H

−1ν
)
, (20)

H ≡ −
−→

∇ ·〈D〉
−→

∇ + [〈σa〉(1 − ν) + τ ] . (21)

• Note that H is the diffusion operator from the LMFGA method.

• C is a very effective preconditioner.

• An infinite-medium Fourier analysis shows that C becomes the exact

inverse of B when operating on eigenfunctions of B in the limit as the

eigenvalue approaches zero.
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A Nested Preconditioned Krylov Method

• We use an analogous strategy for developing a preconditioned Krylov

method to solve the one-group equations:

• We first derive an equation for φg that has a lower rank than the

original monoenergetic transport equation.

• The operator associated with this reduced-rank equation is compact

with real eigenvalues between 0 and 1.

• We use a Krylov method to solve a preconditioned variant of this

equation.

• The preconditioner contains the inverse of the diffusion operator

associated with the DSA method, and is very effective because it

moves the eigenvalues nearest zero to essentially one.

• Once φg has been obtained, Ig can be obtained via a sweep for each

direction and group.
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A Nested Preconditioned Krylov Method

• The dominant effort required to apply the action of the overall

preconditioned operator for f consists of:

• The performance of a sweep for each direction and energy group, and

the solution of a DSA diffusion equation for each energy group during

each inner Krylov iteration.

• A solution of the LMFGA diffusion equation.

• The diffusion equations themselves are solved via a precondioned Krylov

method leading to a triple-nested Krylov method.

• If the diffusion solution technique is efficient, the transport solution

technique will be efficient.
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An Alternative Preconditioned Krylov Method

• The nested Krylov scheme we have derived is analogous to a nested

source iteration with the inner iterations converged during each LMFG

accelerated outer iteration.

• An alternative scheme can be developed that is analogous to a nested

source iteration with one inner DSA iteration per group per LMFGA outer

iteration.

• This scheme requires an equation for the multigroup scalar fluxes rather

than the absorption rate and is thus of higher rank.

• However, the action of the preconditioned operator requires only a sweep

for each direction and group, followed by DSA preconditioning, followed by

LMFGA preconditioning.
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An Alternative Preconditioned Krylov Method

• In particular, the preconditioned equation can be expressed as follows:

(
I + VH

−1νF
) (

I + D
−1

S
) [

I − PL
−1 (S + νXF)

]−→

φ =

(
I + VH

−1νF
) (

I + D
−1

S
)
PL

−1
−→

ξ .

• Fourier analysis can be used to show that these preconditioners move the

eigenvalues of the basic operator that are closest to zero to essentially

one.

• Thus it should be an effective scheme, but its efficiency relative to the

nested scheme is not clear.

• Theory strongly suggests that the use of DSA-precontioning is critical to

the effectiveness of this scheme.
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Final Comments

• The nested preconditioned Krylov method has not yet been tested, but a

multigroup diffusion variant has been tested and found to be highly

effective.

• The strategy of obtaining a reduced-rank equation cannot be applied

unless the interaction operators are low-rank.

• If the interaction operators are full rank, effective preconditioners may or

may not be constructed from low-rank approximate inverses, depending

upon the spectral properties of the interaction operators.

• For the case of thermal neutron transport with upscatter, an analog of the

LMFGA method works very well because of the eigenvalue distribution of

the thermal upscatter operator.

• Full-rank interaction terms sometimes require true multigrid

preconditioners.

• This field of research is wide open and very rich.
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