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Monte Carlo Linear Solvers

•
 

Monte Carlo methods for solving linear 
systems have been around a long time 
(Hammersley and Handscomb, 1964).
– Slow and noisy

•
 

Halton’s (1962-1994) Sequential Monte Carlo 
is a residual technique that is far more 
efficient (exponential convergence).

•
 

This work has not made significant impacts 
in the computational transport (or broader 
numerical) community.
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A Little Review

•
 

The linear matrix system,

•
 

Define the iteration matrix,

•
 

Leads to the Neumann Series.
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A Little More Review

•
 

The Neumann Series will converge given

•
 

This implies the following iterative solution

which is also known as Richardson, or fixed- 
point, iteration.
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Monte Carlo Solutions of Linear Systems

•
 

Random walks can simulate the terms in the 
Neumann series.

•
 

There are two approaches:
– Direct methods
– Adjoint methods

•
 

Direct methods estimate each component of x from a 
random walk.

•
 

Adjoint methods estimate all components of x from a 
random walk.
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Monte Carlo Direct Method

•
 

The direct method estimates each 
component of the vector from a random walk

•
 

The sampled value of X from a single random 
walk with k events is



8 Managed by UT-Battelle
for the Department of Energy Georgia Tech Seminar Series

Monte Carlo Direct Method

•
 

The expected value of X is

•
 

Equating with the Neumann series gives the weights,

•
 

Where pij is the probability for transitioning from 
state i → j.
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Implementation of the Direct Method

•
 

The probability matrix, P, defines the PDF for 
selecting a new state j for a current state i

•
 

Termination is done by augmenting the system with 
a terminating state or by weight cutoff:
– generally, weight cutoff is chosen
– augmentation is similar to analog absorption (probability of 

transitioning from state i to a null state)
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An Example
The iteration matrixThe linear system

build a probability matrix
The spectral radius of this system is 
0.738, so it can be solved by the 
direct method.

1. build an iteration matrix

2. build a probability matrix

3. perform random walks
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Random Walk Algorithm

for n = 1 to Np do

{set state s}

while walk do

x(i) = x(i) + w * b(s)

{sample p(i,j) to get ns}

w = w * H(s,ns)/P(s,ns)

if w < wc then

walk = 0

end if

s = ns

end while

end for

starting state

tally to component of x

sample a new state from P 
(need to build a CDF from P)

update weight

check weight cutoff

update state
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Monte Carlo Adjoint Method

•
 

Sample all components of x in a single 
random walk.

•
 

Sample the Neumann series in reverse, the 
weight change from state i → j is

•
 

And, the probability matrix is calculated from 
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Adjoint Method, cont

•
 

The estimator for this method is,

•
 
is the sampled source in state i0 . Only tally in 

state where random walk resides.

•
 

In this sense, the adjoint method is equivalent to 
forward Monte Carlo transport methods.



14 Managed by UT-Battelle
for the Department of Energy Georgia Tech Seminar Series

Sequential Monte Carlo

•
 

Both the direct and adjoint methods converge slowly 
and are plagued by statistical noise.

•
 

The Sequential Monte Carlo method of Halton allows 
for faster convergence because it is a residual 
method and therefore is not constrained by the 
Central Limit Theorem.

estimate residual

adjoint Monte Carlo with residual source

update x
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Synthetic Schemes

Finished in 1 iteration 

We can create a new iteration scheme by approximating A.
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An Approximate Monte Carlo Synthetic 
Scheme

•
 

We define an approximate Synthetic Scheme 
using Sequential Monte Carlo:

•
 

The adjoint Monte Carlo method is used to 
estimate .
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Practicalities

•
 

1-D studies on time-dependent diffusion 
problems showed good results using 
Sequential Monte Carlo:
– time-dependent problems provide a good 

estimate of the residual at each timestep
– exponential convergence maintained

•
 

MCSA is more robust; applicable to large 3-D 
problems.

•
 

Eventual goal is to use MCSA in nonlinear- 
problems (ie. Newton-MCSA).
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Thermal Radiation Diffusion Model

•
 

The nonlinear equilibrium diffusion equation,

•
 

Use the angle-energy integrated radiation 
intensity as the state variable,
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Time-Discretization

•
 

Backward-Euler time differencing,

•
 

with

•
 

Applying Fick’s Law:



20 Managed by UT-Battelle
for the Department of Energy Georgia Tech Seminar Series

3-D Spatial Discretization

•
 

On a 3-D orthogonal mesh standard Finite- 
Volume differencing is applied,

•
 

Ensuring continuity of flux at cell faces gives 
face-centered diffusion coefficients,
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Flux Evaluation

•
 

Discretizing Fick’s Law gives the face fluxes 
and

•
 

The           can be thought of as leakage 
probabilities from adjacent cells into the 
current cell:
– The Discrete-Diffusion Method (Densmore, Evans, 

Urbatsch) uses this interpretation.
– The diffusion operator must be an H-matrix 

(symmetric in/out/leakage at faces).
– Prevents pre-conditioning strategies.
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Preconditioning

•
 

For MCSA we do not require a SPD system; 
however, we do need the spectral radius less 
than 1,

•
 

This choice achieves:
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•
 

The MCSA algorithm has 2 basic steps:
– a fixed-point iteration (matrix-vector multiply)
– an adjoint Monte Carlo solve

•
 

Where the adjoint method is run with a small number 
of particles and only approximates the operator.

MCSA for Time-Dependent Diffusion
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Monte Carlo Interpretation

Segment of 3D orthogonal mesh:
Each cell has six adjacent cells.
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Monte Carlo Interpretation

•
 

The adjoint Monte Carlo solve has a natural 
transport interpretation:
– build probabilities for scattering from cell i → n 

using the adjacent cell’s equations

– do Monte Carlo transport through the mesh 
tallying in each cell,
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Test Problems

•
 

Compare with standard deterministic 
methods:
– Preconditioned Conjugate Gradient (right-left 

Jacobi) (PCG).
– Preconditioned Richardson (fixed-point) (PFIX).

•
 

Two problems:
– 3-D Marshak Wave
– multi-material duct
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Marshak Problem

Presenter�
Presentation Notes�
Results are numerically equivalent because we converge on the residual.�
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Spectral Radius of Marshak Problem

increases with large timesteps
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Degrees of Freedom

•
 

There are two degrees-of-freedom when 
applying MCSA:
– The number of particles per stage (iteration).
– The weight cutoff.

•
 

MCSA uses the same convergence criterion 
as PCG and PFIX, so numerical accuracy is 
identical between the methods (within 
numerical precision).
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Variation with Number of Particles

Increasing particles per stage reduces iterations at significant cost.



31 Managed by UT-Battelle
for the Department of Energy Georgia Tech Seminar Series

Variation with Weight Cutoff

MCSA is relatively insensitive 
to weight cutoff.

The source algorithm does a fit 
to generate the source.  This 
can result in more source 
particles than requested.  The 
maximum number of particles in 
any given iteration is shown in 
parenthesis.
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Comparisons with Deterministic 
Methods

•
 

Setting the stopping criterion to 1x10-8 for all 
methods we have

•
 

MCSA used 10 particles per stage and a weight 
cutoff of 1x10-4.

Method
Max

Iterations

Relative

CPU Time
PCG 11 1.11
PFIX 11 1.42
MCSA 11 1.0
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Multi-Material Problem

Output at 1000 ns.
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Comparisons with Deterministic 
Methods

•

 

Setting the stopping criterion to 1x10-8 for all methods we have

•

 

MCSA used 1000 particles per stage and a weight cutoff of 
1x10-3.

•

 

Problem run to an elapsed time of 100 ns.

Method
Max

Iterations

Relative

CPU Time
PCG 18 1.03
PFIX 38 1.43
MCSA 20 1.0
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Conclusions

•
 

MCSA is competitive with PCG on 3-D, time- 
dependent problems.

•
 

MCSA is not efficient in non-sparse systems. 
(Too many terms in the Neumann series)

•
 

MCSA is well-suited to time-dependent 
problems because the state at tn provides a 
reasonable estimate of the residual.
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Nonlinear-Consistent Methods

•
 

MCSA may have significant benefits in fully- 
nonlinear, time-dependent problems:

•
 

Newton-methods will convert SPD operators 
into non-symmetric matrices.

•
 

The traditional linear solver for these 
systems is GMRES.  MCSA may be very 
competitive with GMRES for non-symmetric 
systems.
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Adaptive Meshing

•
 

Adaptive meshing can provide significant 
accuracy gains in certain classes of 
problems.

•
 

Generally, adaptive mesh systems are 
characterized by poor condition numbers 
due to varying volumetric effects.

•
 

MCSA, or modified MCSA, may be efficient 
on poorly conditioned matrices.
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